An introduction to the RAmazonS3 package
Duncan Temple Lang

Roger Peng

Table of Contents

GELLING SEAMEA ... ————— 1
Getting the Contents Of an OBJECEccooiiiii i 2
YKo €= ol 11 (o] T PETRT 2
Creating and REMOVING BUCKELSoovviiiiiiiiiiiiieieeeeeeeeeeeeee ettt ereeeees 3
Creating ODJECS/CONLENLcccceee i ————— 3
L0 1 0T= gl o= o | =PSRRI 5
BUCKEL ODJECES ..o 6
Higher-level FUNCLIONAItYccooviiiiii 7
FULUNE DITECIIONS . ..eieteeiiei ettt e e e e ettt et e e e e e e e et b te e e e e e e e e aanebaeeeeeaeeesaannteneeeeaens 7

Getting Started

E Note
We note that we talk about S3 in this document. There is some potential for confusion. S3 here
referstothe Amazon storage server. In R, S3typicaly refersto the " old"-style class mechanism.
We do not talk about that in this document; so S3 refers to Amazon.

S3isan Amazon servicefor hosting filesand allowing them to be accessed from anywhere. Thisisaglobally
availablefile system rather than being tied to a particular machine. It avoids having to run aWeb server and
also provides areasonably rich way to provide different levels of accessto files.

Y ou can accessfiles created by otherson the S3 service and you can create your own files. Y ou canwork with
these files yourself and also grant access to othersto read, write, create, etc. Welll start with the simple case
where you can read buckets and files/objects that other people have created and to which you have access.
Roger hasabucket named RRupload. We canfetchthelist of objectsit containsusingl i st Bucket (), eg.,

R
i stBucket ("RRupl oad", auth = NA)

We specify the name and explicitly force that no authorization information needs to be sent. ! The result
isadataframe

R
Key Last Modi fi ed ETag Size
1 Todo.xm .gz 2009-07-31 18:17:41 55a67aed325ff 758a0896473f 4c91554 1703
2 bar 2009-07-31 17:16: 01 bb184e3e0ca66a62c07e8f 1871dd1039 16

3 bucket. R 2009-07-30 13:32: 35 126b7cdb5ff3c316373502570511599d 340
4 conpressed 2009-07-31 17: 35: 27 f87e83ae612f bf 5593ea6a44a4ch08f 8 80
5 foo 2009-07-31 17: 14: 31 bb184e3e0Ocab66a62c07e8f 1871dd1039 16
6 tnp 2009- 08-02 23:09: 11 41f b5b5ae4d57c5ee528adb00e5e8e74 16

we should be able to do this asignature, but thisis misbehaving at present. It looks to be something with upper-case bucket names.

65a011a29c
65a011a29c
65a011a29c
65a011a29c
65a011a29c
65a011a29c

http://www.omegahat.org/RAmazonS3

7 Xxx 2009-07-31 18:32:57 b5a7791824a3719256e4884e9c65c7f 3 23 65a011a29c

This gives us the names of each object and its size and when it was last modified. The ETag and ID fields
are used to uniquely identify the object and the devel oper who created/modified the object.

Getting the Contents of an Object

We can retrieve the contents of objects in a bucket that we have read-accessto with get Fi | e() . Wegive
this both the name of the object and the bucket. This can be done as two separate arguments (bucket and
name) or as a single argument of the form bucket/object. So we can get the object bucket.R in RRupload
with either

R
X getFi |l e("RRupl oad", "bucket.R', auth = NA)
y get Fi |l e("RRupl oad/ bucket. R', auth = NA)

Depending on how the object was created, there may or may not be information about its content type.
If thereis, get Fi | e() attempts to handle it correctly, e.g. recognizing text content and converting it to a
character string. However, if there is not content type information, we return the content as a raw vector.
If you know thisistext, you can convert it with

R
rawToChar (x)

Thisis about all you can do with nothing but read-permissions. So we'll move on to functions that require
permissions.

More control

Onceyou have alogin and secret, be they your own or somebody else's, you can do alot more with Amazon
S3. Firstly, you can find all the buckets owned by that loginwith | i st Bucket s() . Y ou specify thelogin
and secret key as a named character vector as the value of the aut h parameter, e.g.,

R
listBuckets(auth = c('login' = 'secret'))

Many users will have a single login-secret pair and it is convenient to put these in your R global options.
Y ou can set these as

R
opti ons(AmazonS3 = c('login' = "secret"))
The functions in RAmazonS3 will look for this and useit if aut h is not specified in acall. So we can set
theoption and then call | i st Bucket s() simply with

R
l'istBuckets()

bucket creationDat e
1 RRupl oad 2009- 06- 01 19: 39: 36
2 cpkg 2009- 06- 01 18:54: 56
3 duncantl -test1 2009-08-06 21:11:02
4 rdpshare 2009-06-04 12:19: 19
5 reproduci bl eresearch 2009-06-01 18: 40: 23

http://www.omegahat.org/RAmazonS3

t est 3duncant| 2009-08-06 15:28: 27
t est 4duncant| 2009-08-06 15: 28: 45
t est DuncanTL 2009-08-05 23:51: 27
www. pengui n 2009- 06- 01 21: 20: 38

©O© 00N

Now that we know what buckets we have, we can list any one of these with | i st Bucket () (and using
the implicit specification of the aut h argument), e.g.,

R
i stBucket("rdpshare")
Key Last Mbdi fi ed ETag
1 greeting.xm 2009-07-30 00:25:10 8822584dd80f f c3c609ed799334d5766
Size Omner. 1D

1 101 a02e4359c85dad7828cc8a88c8ddd021ee5deb57cb3008ed19444f f a8f 9b9al4d
Owner . Di spl ayNane Storaged ass
1 rdpeng STANDARD

We can get the file with

rawToChar (get Fi |l e("rdpshare/ greeting.xm "))

Creating and Removing Buckets

The function makeBucket () can be used to create a new bucket. For example, we can create a bucket
named "duncantl-test" with the command

R

makeBucket ("duncant | -test")
2

We can remove a bucket withr enoveBucket () , giving it the name of the bucket, e.g.,

renoveBucket ("duncant| -test")

Creating Objects/Content

It is not very useful to be only able to create buckets. We want to be able to store content. We can do this
by uploading files or by taking content directly in R and uploading it from memory. We do this with the
functionaddFi | e() . Thisexpectsthe contents or file name to upload and then the location on S3 to where
it will be uploaded. We can give the bucket-name pair in asingle string as beforein the form "bucket/name”
or as two separate arguments - bucket, name. These two forms are show here

R

At present, this sometimes "hangs' waiting for additional input. Ctrl-D will terminate it and the bucket will be created. This is
something to do with the HT TP header, but we have killed off the Expect: 100-continue and sent a Content-length of 0.

content = I ("This is a string")
addFi | e(content, "duncantl-test/fo0") # note the m ssing 2nd argunent.
addFi | e(content, "duncantl-test", "bar")

The content can be any R object. If it isastring, we assume that this is the name of afile and we read that
file and upload it. If we want to specify actual text to be uploaded as-is, we can "escape” it using the Asls
function | () aswe have shown above. When addFi | e() seesthat contents inherits from , it does not
consider the string to be afile name. We can also usethei sCont ent s parameter to specify thisexplicitly.

Once we have uploaded the content/file, we will seeit in the listing:

R
i stBucket("duncantl-test")
Key Last Modi fi ed ETag Size
1 foo 2009-08-06 23: 11: 27 41f bSb5ae4d57c5ee528adb00e5e8e74 16
Omer. 1D

1 a02e4359c85dad7828cc8a88c8ddd021ee5deb57¢ch3008ed19444f f a8f 9b9als
Owner . Di spl ayNane St oraged ass
1 rdpeng STANDARD

When we upload content, we should specify its content type. We have seen that if we don't, accessing it
reguires more intervention by the recipient. We can specify the content type viathet ype parameter. This
should be something reasonably standard such as "application/gzip", "application/binary”, "text/html" or
"text/xml". We may provide functionality that guesses the content-type from the extension of the file or
type of the object. For now, if we have a character string, we set the content-type to text. Otherwise, we
assume binary content.

We can also specify additional meta-information. These are, in some sense, similar attributes on an R object
in that they are name-vale pairs. The valueswill be converted to strings. Y ou specify these when uploading
an object viathe met a argument. The command

R
addFile(l("Sonme text"), "dtl-ttt", "bob",
meta = c(foo = 123, author = "Duncan Tenple Lang"))
provides two meta values named "foo" and "author”. We can retrieve this meta-information for any of the
S3 objects.

As easy asit isto create content, we can remove an object withr enoveFi | e() , e.g.

renoveFi | e("duncant| -test/foo0")
renoveFi | e("duncantl-test", "foo")

Another somewhat convenient operation is to copy a file/object. We can copy an object in a bucket to an
other object in the same bucket or to an entirely separate bucket. We use copyFi | e() for this. We giveit
the name of the existing source object and the target object as the two arguments. These can (and should
be) in the form "bucket/name". The target can be just a name and we assume the target bucket is the same
as the source.

R

copyFil e("duncantl -test/bar", "xxx")
Alternatively, we can copy an object from one bucket to another, e.g.

R
copyFi | e("ww\. pengui n/tenpl", "dtl-share/tenpl")
We can also copy an object to another bucket and re-use the object name within the new bucket by adding
a"/" tothe end of the target bucket. For example,

R
copyFil e("dtl-share/tenpl”, "dtl-ttt/")
will create a copy of templ in dtl-ttt.

Other Facilities

We have described the commonly used facilities above. There are a few others. We can determine if an
object existsusing s3EXxi st s() . For example,

R
s3Exi sts("dtl-ttt/bob")
s3Exi sts("dtl-ttt/jane")

determine if the two objects named bob and jane are present in the bucket "dtl-ttt".

We can get (meta)information about an object with about () (also named get | nf o()). This returns a
character vector giving any meta-data associated with the object, e.g. that was specified when the object/file
was created. For example,

R
about ("dtl-ttt/bob")
about ("dtl-ttt", "bob")
aut hor
"Duncan Tenpl e Lang"
f oo
"123"

Last-Modified

"Sat, 08 Aug 2009 00:20:11 Gvr

ETag

"\ "9db5682a4d778ca2cb79580bdb67083f\ " "
Cont ent - Type

"text/plain"

Content - Lengt h

ngn

Server

" AmazonS3"

We can query and set the access controls for a bucket or file/object. The simple way to do this is with
get S3Access() and set S3Access() . Thesetake the name of the object being queried as bucket-name
pair. get S3Access|() tells us who has what permissions. It returns a data frame giving this information
for the specified bucket or bucket-object. set S3Access() alows usto set apermission in asimple way.
We can make a bucket or object private, public for reading, public for reading and writing, or authenticated

read access. These apply to everybody. set ACL() alows us to specify fine-grained access "limitations'
for individuals.

Let's create a new bucket named "dtl-share’ and afiletoit:

R
makeBucket ("dt| -share")
addFil e(1 ("H everyone"), "dtl-share/hello")
Now we ook at the access settings:

R

get S3Access("dtl-share")

I D Di spl ayNane P
1 a02e4359c¢85dad7828cc8a88c8ddd021ee5deb57cb3008ed19444f f a8f 9b9al4 rdpeng FUL

(We are using Roger's login and that is why it is owned by him eventhough we are using dtl s a bucket
name!) We get the same result for the "hello" file.

So now let's make that file publicly available.

set S3Access("dtl-share", "hello", "public-read")
Now we can examine the access settings

get S3Access("dtl-share/ hell 0")

I D Di spl ayNane
1 a02e4359c¢85dad7828cc8a88c8ddd021ee5deb57cb3008ed19444f f a8f 9b9al4 rdpeng
2 <NA> <NA> htt

This shows the original access (for rdpeng) but has a second row and a new column in the data frame -
URI . This second row indicates that all the users can read thisfile. You can access it via a Web browser
at http://dtl-share.s3.amazonaws.com/hello.

But what if we want to allow DTL to have full control over the file also.

R
set ACL("dtl-share/ hell 0", "4el0a30dc41e8b3b6c7bcebe32720f 27b4a79454e99155590730897

Bucket Objects

We have described the low-level functionality in R for directly accessing the S3 Amazon storage server's
facilities. We now turn our attention to a different R interface that hides some of these functions. You
still list al the buckets available for a particular "login” via |l i st Bucket s() . However, instead of
I i st Bucket (nane) , we can think of the bucket as being an object in R. We create such an object with

R
dtl.share = Bucket("dtl-share")

(We could have assigned this to any variable in R.) This is an object of class . It has methods
that working with it slightly more convenient, especially for interactive use. The constructor also alows

http://dtl-share.s3.amazonaws.com/hello

us to specify the authorization key and secret which is stored in the object. This alows us to avoid having
to specify authorization information in subsequent calls. Thisis convenient if one is working with several
different authorization keys, even within the same bucket. One can have a separate object for each
authorization. Note that these bucket objects should not be serialized as the secret is private.

Thefirst thing we can do with a object is get alist of the objectsit containsusing nanmes() . This
gives the names of the objects as a character vector.

We can fetch the contents of one of the objects in a bucket with the[[() or $() operator, e.g.

b$t enpl

b[["tenmpl"]]

One of the benefits of the [[() syntax isthat we can specify additional arguments. For example, we could
specify whether the content was binary or not using

R
b[["tenpl”, binary = FALSE]]
Wecanusea object to upload content to an object withinthe bucket. Weuse$<- (Jor[[<- (), eq.,
R

b$tenp3 = I ("A string in R")
doc = xm Parse(systemfile("doc", "s3amazon.xm"))
b[["tenpd", type = "text/html"]] = I (saveXM.(doc))

Higher-level Functionality

The function s3Save() is an almost exact substitute for the save() function. It allows us to serialize one
or more R objectsinto afile and to upload that fileto S3. Thef i | e parameter in this function identifies
the bucket and object in the S3 server, e.g. "dtl-share/ab.rda"

R
a 1:10
b =letters[1:4]
s3Save(a, b, file = "dtl-share/ab.rda")
This saves the objects in a binary format and gives the resulting S3 amazon object a Content-Type of ap-
plication/x-rda. We will implement a corresponding handler for de-serializing directly from the S3 server
asweretrieveit, e.g.

R
s3Load("dtl -share/ab.rda")

or even

getFile("dtl-share/ab.rda")
and let get URLCont ent () to do the work for us.

Future Directions

Roger has some nice ideas about disseminating objects from statistical analyses using S3 as arepository.

	
	Table of Contents
	Getting Started
	Getting the Contents of an Object
	More control
	Creating and Removing Buckets
	Creating Objects/Content
	Other Facilities
	Bucket Objects
	Higher-level Functionality
	Future Directions

