
1

An simple R interface
to Google Documents

Table of Contents
Tools for working with word processing documents ... 6
Spreadsheets ... 6
Adding Documents ... 8
Managing Documents ... 8
Comment ... 8

This illustrates how to use the code that we put together quite rapidly to communicate with the Google
Documents manager. It uses the XML and RCurl packages and illustrates that it is relatively quick and easy
to use their primitives to interact with Web services.

The first thing to do is login using getGoogleAuth() . You specify your login name for Google, e.g.
dtemplelang@gmail.com, and your password for that account.

R
auth = getGoogleAuth("dtemplelang@gmail.com", gpasswd)

We can put this "permanently" into a Curl handle so that we don't need to specify it in all the calls with

R
con = getGoogleDocsConnection(auth)

We now just pass con as the value for the curl parameter in calls to the other functions. In the future, we
might provide an interface that avoids this such as

R
con$getDocs()
 names(con)

and where the con value is implicitly provided.

Note

We do have to specify auth when calling uploadDoc() .

Having logged in, we can find out about the existing documents.

R
docs = getDocs(con)

This is a list of R descriptions from the XML contents.

R
names(docs)

[1] "my foo1"
[2] "my foo1"
[3] "my foo1"
[4] "my foo"

An simple R interface to Google Documents

2

[5] "another bob"
[6] "\"~/foo.csv\""
[7] "SampleDoc"
[8] "Copy of This is a sample document that we are..."
[9] "bob"

R
names(docs[[1]])

 [1] "id" "published" "updated" "category" "title"
 [6] "content" "alternate" "self" "edit" "edit-media"
[11] "author" "feedLink"

R
docs[[1]]

$id
[1] "http://docs.google.com/feeds/documents/private/full/document%3Adfwhmfk3_6c26hc6gr"

$published
[1] "2008-09-24 14:02:56 PDT"

$updated
[1] "2008-09-24 14:02:56 PDT"

$category
 scheme
 "http://schemas.google.com/g/2005#kind"
 term
"http://schemas.google.com/docs/2007#document"
 label
 "document"

$title
[1] "my foo1"

$content
 type
 "text/html"
 src
"http://docs.google.com/feeds/download/documents/RawDocContents?action=fetch&justBody=false&revision=_latest&editMode=false&docID=dfwhmfk3_6c26hc6gr"

$alternate
 rel
 "alternate"
 type
 "text/html"
 href

An simple R interface to Google Documents

3

"http://docs.google.com/Doc?id=dfwhmfk3_6c26hc6gr"

$self
 rel
 "self"
 type
 "application/atom+xml"
 href
"http://docs.google.com/feeds/documents/private/full/document%3Adfwhmfk3_6c26hc6gr"

$edit
 rel
 "edit"
 type
 "application/atom+xml"
 href
"http://docs.google.com/feeds/documents/private/full/document%3Adfwhmfk3_6c26hc6gr/fli10bmo"

$`edit-media`
 rel
 "edit-media"
 type
 "text/html"
 href
"http://docs.google.com/feeds/media/private/full/document%3Adfwhmfk3_6c26hc6gr/fli10bmo"

$author
dtemplelang@gmail.com
 "dtemplelang"

$feedLink
 rel
 "http://schemas.google.com/acl/2007#accessControlList"
 href
"http://docs.google.com/feeds/acl/private/full/document%3Adfwhmfk3_6c26hc6gr"

attr(,"class")
[1] "GoogleDocument"

We can turn these into a data frame with

R
as(docs, "data.frame")

We can fetch a document with

R
getDocContent(docs[["SampleDoc"]], con)

or directly by the name of the document

An simple R interface to Google Documents

4

R
getDocContent("SampleDoc", con)

We can remove a document with

R
deleteDoc("my foo1", con)

or

R
deleteDoc(docs[[1]], con)

You can check what files remain with

R
names(getDocs(con))

Finally, to upload a file from your system to your Google Documents account, we use uploadDoc() .
For this function, you currently have specify a value for the auth parameter. This is the value returned by
getGoogleAuth() earlier on.

uploadDoc() you can supply a file name or the actual content to upload. If the value of content matches
a file name, then we read the contents of that file and upload that string. If this is a binary file, you should
read the contents yourself and pass those as the value for content.

We try to determine the type of document (e.g. a spreadsheet, a Word document, a CSV file) from the
extension of the filename (using findType() and matching the extension - MIME type table from Google's
documentation). If the extension doesn't match or if you are specifying the content directly, you should
specify a vale for the type parameter. This can either be the MIME type (or an initial part thereof), e.g
"text/html" or "text/tab", or you can provide the corresponding extension, e.g. "htm" or "tab".

The name parameter allows you to specify a name to be used as the title of the document in the Google
Documents manager panel.

Note that Google cannot convert all types of documents and does not necessarily even handle "rich" CSV
files.

So let's upload a CSV file with the contents

1, 2, 3
4, 5, 6

We'll first upload the contents directly

R
x = "1, 2, 3\n4, 5, 6\n"
uploadDoc(x, auth, name = "direct csv", type = "csv")

If we put the contents in the file /tmp/foo.csv, then we can upload this as

R
uploadDoc("/tmp/foo.csv", auth)

Here uploadDoc() can infer the MIME type and the name from the local file name.

An simple R interface to Google Documents

5

Binary files are slightly more complex.

R
f = system.file("sampleDocs", "SampleDoc.doc", package = "RGoogleDocs")
uploadDoc(f, auth, type = "doc", binary = TRUE)

To upload a spreadsheet

R
f = system.file("sampleDocs", "SampleSpreadsheet.xls", package = "RGoogleDocs")
uploadDoc(f, auth, name = basename(f), binary = TRUE)

When binary is TRUE, the uploadDoc() function calls readBinary() which amounts to calling
readBin(f, "raw", 22016) as it determines the number of bytes in the file for us. You can work
with raw content yourself directly and upload that. This is like uploading the contents as text when there
is no associated file but the content was generated from a previous call. For example, let's read the binary
file ourselves:

R
vec = readBinary(f)
class(vec)

Then we can upload it, but again we have to specify the type and any name we want.

R
uploadDoc(vec, auth, type = "xls")

You can also upload material to a specific folder. We do this by specifying the identity of the folder via
uploadDoc() 's folder parameter. This should be a GoogleFolder object retrieved from, for exam-
ple, a call to getDocs() or listFolder() . We get the list of "documents"

R
docs = getDocs(con)

and then can upload a file to say "MyFolder" using

R
uploadDoc(x, con, name = "boo", type = "csv", folder = docs$MyFolder)

A more convenient version of this is

R
f[["boo1", type = 'csv']] = x

where we "assign" the value to a name within the folder as if it were a list. Note that we can specify the type
and other arguments that are passed on to uploadDoc() . Also note that the connection object is obtained
from the folder object.

We can also specify the folder by name, e.g.,

R
uploadDoc(x, con, name = "boo2", type = "csv", folder = "MyFolder")

But be aware that this involves an implicit call to getDocs() and so involves an extra "trip to the server".

Finally, if you happen to know the "internal" identity of the folder, i.e. is /feeds/folders/.../ URL, you can
specify this. But note that it must be "escaped" using the I() function, e.g.,

R
uploadDoc(x, con, name = "boo3", type = "csv", folder = I(docs$MyFolder@content["src"]))

An simple R interface to Google Documents

6

Tools for working with word processing
documents
The word processing documents are just HTML documents. So we can use htmlParse() (or html-
TreeParse()) and the XPath to find what we want. We can get the content or find the nodes of interest
and modify them and then upload the resulting document. We have provided some simple functions for
accessing elements of a word processing document. These are comments() , images() , footnotes()
and sections() . Each of these takes either the name of a document and a connection (returned from
getConnection()) or the parsed HTML document. For example, we can call each of these as either:

R
comments("Many Parts", con)
doc = htmlParse(getDocContent("Many Parts", con), asText = TRUE, error = function(...) {})
comments(doc)
sections(doc)

The latter approach avoids retrieving the document and parsing it multiple times.

comments() returns a data frame with a row for each comment and columns giving the text of the comment,
the date the comment was last modified (or created?) and the name of the author of the comment.

sections() returns a character vector giving the title of the different sections. The names of the elements
of this vector are numbers giving the level of the section. This is taken from the h1, h2, h3, ..., h6 elements
in the HTML document.

The footnotes() function returns a character vector giving the text of the footnotes. The names are the
unique identifiers within the document of these elements.

images() returns the names of the image files referenced within the document. Note that these are not the
original names of the image files, but the names as they are stored within the Google documents repository.

Spreadsheets
We have added basic functions for working with spreadsheets. We create a connection for working with
spreadsheets rather than word processing documents. We do this by specifying the service as "wise" rather
than the default "writely".

R
sheets.con = getGoogleDocsConnection(getGoogleAuth("dtemplelang@gmail.com", "...", service = "wise"))

When we call getDocs() with this connection, we get back information about spreadsheets only.

R
a = getDocs(sheets.con)

The function getWorksheets() is used to obtain a list of objects that identify each of the worksheets
within a spreadsheet.

R
ts = getWorksheets(a$TwoSheets, sheets.con)
 names(ts)

getWorksheets() is smart enough to be able to work from the name of the spreadsheet, e.g.

An simple R interface to Google Documents

7

R
ts = getWorksheets("TwoSheets", sheets.con)

but it is faster to use the GoogleDocument object returned via getDocs() as it avoids an extra request to
the Google Docs server.

We can do various things with the spreadsheet and its worksheets. We can query the dimensions and/or the
contents of the worksheet or a part of it, we can modify one or more cells, and we can add a worksheet to
a spreadsheet. The functions dim() , nrow() and ncol() all work. These report the "declared" dimensions
of the worksheet, i.e. how many rows and columns have been allocated. This is often way more than are
actually used. The function getExtent() tells us about the rectangular region that is actually in use. This
returns a 2 x 2 matrix giving the "bounding box" of the effective cells in use. If there is nothing in the first
row and column, this would return 2, 2 as the indices of the first cell.

We can convert a worksheet to a matrix or data frame using the regular as() function, e.g. as(sheet,
"matrix") or as(sheet, "data.frame"). The coercion methods are merely calls to the function
sheetAsMatrix() which provides more control of the coercion. It allows us to specify how the column
names are found (e.g. as the first row of the worksheet, or given in the call as the value of the header
parameter) and whether to discard "empty" rows and columns. For example,

R
sheetAsMatrix(ts$Sheet1, header = TRUE, as.data.frame = TRUE, trim = TRUE)

If we want to access one or more cells, we can convert the entire worksheet into a data frame and then use R's
regular subsetting. However, this is potentially expensive in that we have to download the entire worksheet
and then process all of the contents. If the worksheet is large and we only want a few values, we are doing a
lot of extra work. So we have provided methods for the subsetting operator [() that do this more efficiently
by retrieving and processing only the specified cells. We can use these on the GoogleWorksheetRef
objects. For example, suppose we have our sheet with

R
con = getGoogleDocsConnection("me", "my password")
mine4 = getWorksheets("mine4", con)[[1]]

then we can get a single cell with

R
mine4[2, 3]

We can get multiple cell values, e.g.

R
mine4[1:2,]
mine4[, 2:3]
mine4[1,]
mine4[, 3]

We can also assign values to one or more cells. Let's start by adding a new worksheet to the spreadsheet
mine4:

R
mine4 = getDocs(con)$mine4
sh = addWorksheet(mine4, con, "test")

Now we can populate it

R

An simple R interface to Google Documents

8

sh[1,1] = 2
sh[2, 1:10] = letters[1:10]
sh[, 11] = letters[1:5]

When we omit a dimension, the affected cells range over the extent

Adding Documents
We can use uploadDoc() to upload a document or even an R object such as a data frame or matrix which
will be converted to a spreadsheet via a CSV upload. We can use addSpreadsheet() to create a spread-
sheet document with a single empty worksheet of specified dimensions. This is a simple wrapper for up-
loadDoc() Note that when uploading a document using either of these functions, you are communicating
with the documents API, i.e. writely, and you need authentication for that. So if you have a connection for
the spreadsheets API, you cannot use that.

Managing Documents
We have been focusing on the contents of documents. The Google Docs API allows us to manage the col-
lection of documents. It provides functionality to upload and delete/remove documents, rename documents,
create folders and move documents into folders. The function addFolder() allows us to create a new
folder. This is created at the top-level. We can then move it to a different folder. The function moveTo-
Folder() does this. addFolder() takes one or more names and a connection and creates the folders with
these names.

R
f = addFolder(c("foo", "bar"), con)

The results are GoogleFolder objects. We can use these as target/destinations in calls to moveToFold-
er() . For example, we can move the folder bar into foo with

R
moveToFolder(fbar, ffoo)

We can change meta data, such as the title, of the document. This is done via the operators $*<-() and
[<-() . (The accessor methods are not supported.) Given a document doc we set, e.g., the title with

R
doc$title = "new title"

We can also use

R
doc["title"] = "new title"

The benefit of the second approach (apart from allowing variables, e.g. var = "title"; doc[var]
= value) is that we can set multiple values in a single call, e.g.

R
doc["title", "author"] = list("new title", c(name = "Bob", email = "bob@bob.com"))

Comment
The Google documents and spreadsheets servics are interesting. The Web-based nature has several attrac-
tive aspects. However, the interactive tools are currently quite limited relative to regular office applications.

An simple R interface to Google Documents

9

There is little functionality for working richly with styles. The APIs are also reasonably limited. Further-
more, some of the documentation is slightly unclear and even incorrect, e.g. the code for some examples do
not correspond to what is being discussed in the text, the batch editing section talks about POST, but in fact
PUT works and POST does not appear to. While developing some of the functionality in this package, the
Google service claimed it was experiencing technical difficulties and was unable to list all my documents.
So I am not ready to trade-in my office tools (not that I use them very much anyway!), but the notion of
publishing "live" documents is appealing. The IDynDocs package has a different take on "live".

	An simple R interface to Google Documents
	Table of Contents
	Tools for working with word processing documents
	Spreadsheets
	Adding Documents
	Managing Documents
	Comment

