An simple R interface
to Google Documents

Table of Contents

Tools for working with word processing dOCUMENESuuviiiieiiiiiiiiiiiee e e e e rarrre e e e 6
S (=705 1 USRS PPPPR 6
YN0 o [T aTe Do o0 1041 o (=S EPRRPP 8
MaNagiNg DOCUMENLSueiiiieiiii ittt e e e e e e ee st e e e e e e e e et e e e e e e e e e s s saaa b e reeeeaeeessaastbaeeeeeaeesssnsnrsanneeaeeas 8
(6010010 01 o T TP TP PPPPTPTPTRTPIN 8

This illustrates how to use the code that we put together quite rapidly to communicate with the Google
Documents manager. It usesthe XML and RCurl packages and illustratesthat it isrelatively quick and easy
to use their primitives to interact with Web services.

The first thing to do is login using get Googl eAut h() . You specify your login name for Google, e.g.
dtemplelang@gmail.com, and your password for that account.

R
aut h = get Googl eAut h("dt enpl el ang@mmai | . coni’, gpasswd)
We can put this"permanently” into a Curl handle so that we don't need to specify it in all the calls with

R
con = get Googl eDocsConnecti on(aut h)
We now just pass con asthevaluefor thecur | parameter in callsto the other functions. In the future, we
might provide an interface that avoids this such as

R
con$get Docs()
nanes(con)

and where the con value isimplicitly provided.

@ Note
We do have to specify auth when calling upl oadDoc() .

Having logged in, we can find out about the existing documents.

docs = get Docs(con)
Thisisalist of R descriptions from the XML contents.

nanes(docs)

[1] "ny fool"
[2] "ny fool"
[3] "nmy fool"
[4] "ny foo"

An smple R interface to Google Documents

[5] "another bob"

[6] "\"~/foo.Ccsv\""

[7] " Sanpl eDoc”

[8] "Copy of This is a sanple docunent that we are...'

[9] "bob"
R
nanes(docs[[1]])
[1] "id" "publ i shed" "updated" "cat egory" "title"
[6] "content" "alternate" "self" "edit" "edit-nmedia"
[11] "author™” "f eedLi nk"
R

docs[[1]]
$id
[1] "http://docs. googl e.com feeds/ docunents/private/full/docunent ¥B8Adf whnf k3_6c26h
$publ i shed
[1] "2008-09-24 14:02:56 PDT"
$updat ed
[1] "2008-09-24 14:02:56 PDT"
$cat egory

schene

"http://schemas. googl e. cont g/ 2005#ki nd"
term
"http://schemas. googl e. conf docs/ 2007#docunent "
| abel
"docunent "

$title
[1] "nmy fool"
$cont ent

"http://docs. googl e. com f eeds/ downl oad/ docunent s/ RawbDocCont ent s?act i on=f et ch& ust E

$al ternate
rel
"al ternate"
type
"text/htm"
hr ef

An smple R interface to Google Documents

"http://docs. googl e.

$sel f

"http://docs. googl e.

$edi t

"http://docs. googl e.

$ edit-nedia

"http://docs. googl e.

cont Doc?i d=df whnf k3_6c26hcégr"

re
"sel f

typ
"application/at om-xm
hr e

cont f eeds/ docunent s/ pri vat e/ ful | / docunent ¥BAdf whnf k3_6c26hc6gr

"application

cont f eeds/ docunent s/ pri vat e/ ful | / docunent ¥BAdf whnf k3_6c26hc6gr

"edit-
"t ext

cont f eeds/ nedi a/ pri vat e/ ful | / docunent ¥8Adf whnf k3_6c26hcegr/fli

$aut hor

dt enpl el ang@nmmai | . com
"dt enpl el ang"”

$f eedLi nk

"http://docs. googl e.

attr(,"class")
[1] " CGoogl eDocunent "

rel

"http://schenmas. googl e. conf acl / 2007#accessControl Li st"

hr ef

cont f eeds/ acl / privat e/ ful | / docunent ¥BAdf whnf k3_6c26hcégr"

We can turn these into a data frame with

as(docs, "data.frane")

We can fetch a document with

get DocCont ent (docs| [

" Sanpl eDoc"]], con)

or directly by the name of the document

An smple R interface to Google Documents

R
get DocCont ent (" Sanpl eDoc", con)
We can remove a document with

R
del et eDoc("ny fool", con)
or

R
del et eDoc(docs[[1]], con)
Y ou can check what files remain with

R

nanes(get Docs(con))

Finally, to upload a file from your system to your Google Documents account, we use upl oadDoc() .
For this function, you currently have specify avaue for the aut h parameter. Thisisthe value returned by
get Googl eAut h() earlier on.

upl oadDoc () you can supply afilenameor the actual content to upload. If thevalue of cont ent matches
afile name, then we read the contents of that file and upload that string. If thisis abinary file, you should
read the contents yourself and pass those as the value for cont ent .

We try to determine the type of document (e.g. a spreadsheet, a Word document, a CSV file) from the
extension of thefilename (using f i nd Ty pe() and matching the extension - MIME typetablefrom Google's
documentation). If the extension doesn't match or if you are specifying the content directly, you should
specify avale for thet ype parameter. This can either be the MIME type (or an initia part thereof), e.g
"text/html" or "text/tab", or you can provide the corresponding extension, e.g. "htm" or "tab".

The name parameter allows you to specify a name to be used as the title of the document in the Google
Documents manager panel.

Note that Google cannot convert al types of documents and does not necessarily even handle "rich" CSV
files.

So let's upload a CSV file with the contents
1, 2, 3
4, 5, 6

Well first upload the contents directly

R
x ="1, 2, 3\n4, 5 6\n"
upl oadDoc(x, auth, nane = "direct csv", type = "csv")
If we put the contents in the file /tmp/foo.csv, then we can upload this as

R

upl oadDoc("/t nmp/ foo. csv", auth)
Here upl oadDoc() can infer the MIME type and the name from the local file name.

An smple R interface to Google Documents

Binary files are slightly more complex.

R
f = systemfile("sanpl eDocs", "SanpleDoc.doc", package = "RGoogl eDocs")
upl oadDoc(f, auth, type = "doc", binary = TRUE)
To upload a spreadsheet

R
f = systemfile("sanpl eDocs", "Sanpl eSpreadsheet. x|l s", package = "RGoogl eDocs")
upl oadDoc(f, auth, name = basename(f), binary = TRUE)
When bi nary is TRUE, the upl oadDoc() function calls r eadBi nar y() which amounts to calling
readBi n(f, "raw', 22016) asit determinesthe number of bytesin the file for us. You can work
with raw content yourself directly and upload that. This is like uploading the contents as text when there
is no associated file but the content was generated from a previous call. For example, let's read the binary
file ourselves:

R
vec = readBinary(f)
cl ass(vec)
Then we can upload it, but again we have to specify the type and any name we want.

R

upl oadDoc(vec, auth, type = "xls")

You can aso upload material to a specific folder. We do this by specifying the identity of the folder via
upl oadDoc() 'sf ol der parameter. This should be a object retrieved from, for exam-
ple, acal toget Docs() or |l i st Fol der () . We get thelist of "documents"

R
docs = get Docs(con)
and then can upload afile to say "MyFolder" using

R
upl oadDoc(x, con, name = "boo", type = "csv", folder = docs$M/Fol der)
A more convenient version of thisis

R

f[["bool", type = '"csv']] = X
wherewe "assign” the value to a name within thefolder asif it were alist. Note that we can specify the type

and other arguments that are passed on to upl oadDoc () . Also note that the connection object is obtained
from the folder object.

We can also specify the folder by name, e.g.,

R
upl oadDoc(x, con, nanme = "boo2", type = "csv", folder = "MWFol der")
But be aware that thisinvolves an implicit call to get Docs() and so involves an extra "trip to the server".

Finaly, if you happen to know the "internal” identity of the folder, i.e. is /feeds/folders/.../ URL, you can
specify this. But note that it must be "escaped” using the | () function, e.g.,

R
upl oadDoc(x, con, nane = "boo3", type = "csv", folder = | (docs$M/Fol der @ontent["s

An smple R interface to Google Documents

Tools for working with word processing
documents

The word processing documents are just HTML documents. So we can use ht m Par se() (or ht mi -
Tr eePar se()) and the XPath to find what we want. We can get the content or find the nodes of interest
and modify them and then upload the resulting document. We have provided some simple functions for
accessing elements of aword processing document. These are contrent s() , i hages() , f oot not es()
and sect i ons() . Each of these takes either the name of a document and a connection (returned from
get Connect i on()) or the parsed HTML document. For example, we can call each of these as either:

R
comment s("Many Parts", con)

doc = htn Parse(get DocContent ("Many Parts", con), asText = TRUE, error = function(

coment s(doc)
sections(doc)

The latter approach avoids retrieving the document and parsing it multiple times.

comrent s() returnsadataframewith arow for each comment and columns giving the text of the comment,
the date the comment was last modified (or created?) and the name of the author of the comment.

sect i ons() returns a character vector giving thetitle of the different sections. The names of the elements
of this vector are numbers giving the level of the section. Thisistaken from the hl, h2, h3, ..., h6 elements
inthe HTML document.

Thef oot not es() function returns a character vector giving the text of the footnotes. The names are the
unique identifiers within the document of these elements.

i mages () returns the names of the image files referenced within the document. Note that these are not the
original names of theimagefiles, but the names as they are stored within the Google documents repository.

Spreadsheets

We have added basic functions for working with spreadsheets. We create a connection for working with
spreadsheets rather than word processing documents. We do this by specifying the service as "wise" rather
than the default "writely".

R
sheets. con = get Googl eDocsConnecti on(get Googl eAut h("dt enpl el ang@nai | . cont',
When we call get Docs () with this connection, we get back information about spreadsheets only.

R
a = get Docs(sheets. con)
The function get Wor ksheet s() is used to obtain a list of objects that identify each of the worksheets
within a spreadshest.

R
ts = get Wrksheet s(a$TwoSheets, sheets. con)
nanes(ts)

get Wr ksheet s() is smart enough to be able to work from the name of the spreadshest, e.g.

An smple R interface to Google Documents

R
ts = get Wrksheet s(" TwoSheets", sheets. con)

but it is faster to use the GoogleDocument object returned viaget Docs() asit avoids an extra request to
the Google Docs server.

We can do various things with the spreadsheet and its worksheets. We can query the dimensions and/or the
contents of the worksheet or a part of it, we can modify one or more cells, and we can add a worksheet to
aspreadsheet. The functionsdi m() , nr ow() and ncol () all work. These report the "declared" dimensions
of the workshest, i.e. how many rows and columns have been allocated. This is often way more than are
actually used. The function get Ext ent () tells us about the rectangular region that is actually in use. This
returns a2 x 2 matrix giving the "bounding box" of the effective cellsin use. If thereis nothing in the first
row and column, this would return 2, 2 as the indices of the first cell.

We can convert a worksheet to a matrix or data frame using the regular as() function, e.g. as(sheet ,

"matri x") oras(sheet, "data.franme").Thecoercion methodsare merely callsto the function
sheet Asat ri x() which provides more control of the coercion. It allows us to specify how the column
names are found (e.g. as the first row of the worksheet, or given in the call as the value of the header

parameter) and whether to discard "empty" rows and columns. For example,

R
sheet AsMatri x(ts$Sheet 1, header = TRUE, as.data.frame = TRUE, trim = TRUE)

If wewant to access one or more cells, we can convert the entire worksheet into adataframe and then use R's
regular subsetting. However, thisis potentially expensivein that we have to download the entire worksheet
and then process al of the contents. If the worksheet islarge and we only want afew values, we are doing a
lot of extrawork. So we have provided methods for the subsetting operator [() that do this more efficiently
by retrieving and processing only the specified cells. We can use these on the

objects. For example, suppose we have our sheet with

con = get Googl eDocsConnection("ne", "ny password")
m ne4 = get Wrksheets("m ne4", con)[[1]]

then we can get asingle cell with

m ne4[2, 3]
We can get multiple cell values, e.g.

m ne4[1: 2,]
m ne4[, 2:3]
m ne4[1,]
m ne4[, 3]

We can also assign values to one or more cells. Let's start by adding a new worksheet to the spreadsheet
mined:

R
m ne4 = get Docs(con) $mi ne4d
sh = addWor ksheet (m ne4, con, "test")
Now we can populate it

R

An smple R interface to Google Documents

sh[1,1] = 2
sh[2, 1:10] = letters[1:10]
sh[, 11] = letters[1l:5]

When we omit a dimension, the affected cells range over the extent

Adding Documents

We can use upl oadDoc () to upload a document or even an R object such as a data frame or matrix which
will be converted to a spreadsheet viaa CSV upload. We can use addSpr eadsheet () to create a spread-
sheet document with a single empty worksheet of specified dimensions. Thisis asimple wrapper for up-
| oadDoc () Note that when uploading a document using either of these functions, you are communicating
with the documents AP, i.e. writely, and you need authentication for that. So if you have a connection for
the spreadsheets API, you cannot use that.

Managing Documents

We have been focusing on the contents of documents. The Google Docs API allows us to manage the col-
lection of documents. It provides functionality to upload and del ete/remove documents, rename documents,
create folders and move documents into folders. The function addFol der () allows us to create a new
folder. Thisis created at the top-level. We can then move it to a different folder. The function noveTo-
Fol der () doesthis. addFol der () takes one or more names and a connection and creates the folders with
these names.

R
f = addFol der(c("foo", "bar"), con)
Theresultsare objects. We can use these astarget/destinationsin callstonoveToFol d-
er () . For example, we can move the folder bar into foo with

R
noveToFol der (f $bar, f $fo00)

We can change meta data, such as the title, of the document. This is done via the operators $* <- () and
[<- () . (The accessor methods are not supported.) Given a document doc we set, e.g., thetitle with

R
doc$title = "new title"
We can also use

R
doc["title"] = "newtitle"
The benefit of the second approach (apart from allowing variables, e.g.var = "title"; doc[var]
= val ue) isthat we can set multiple valuesin asingle call, e.g.

R
doc["title", "author"] = list("newtitle", c(name = "Bob", email = "bob@ob.coni))

Comment

The Google documents and spreadsheets servics are interesting. The Web-based nature has several attrac-
tive aspects. However, theinteractive tools are currently quite limited relative to regular office applications.

An smple R interface to Google Documents

There islittle functionality for working richly with styles. The APIs are aso reasonably limited. Further-
more, some of the documentation is dlightly unclear and even incorrect, e.g. the code for some examples do
not correspond to what is being discussed in the text, the batch editing section talks about POST, but in fact
PUT works and POST does not appear to. While developing some of the functionality in this package, the
Google service claimed it was experiencing technical difficulties and was unable to list all my documents.
So | am not ready to trade-in my office tools (not that | use them very much anyway!), but the notion of
publishing "live" documents is appealing. The IDynDacs package has a different take on "live".

	An simple R interface to Google Documents
	Table of Contents
	Tools for working with word processing documents
	Spreadsheets
	Adding Documents
	Managing Documents
	Comment

