
Package ‘RObjectTables’
July 23, 2012

Version 0.3

Date 2012/07/20

Title User-level attach()’able table support

Author Duncan Temple Lang <duncan@research.bell-labs.com>

Depends R (>= 1.5.0), methods

Imports methods

Maintainer Duncan Temple Lang <duncan@research.bell-labs.com>

Description The C and S code allows one to define R objects
to be used as elements of the search path with their own
semantics and facilities for reading and writing variables.
The objects implement a simple interface via R functions (either methods or clo-
sures) and can access external data,e.g. in other applications, languages, formats, ...

License GPL

URL http://www.omegahat.org/RObjectTables, http://www.omegahat.org
http://www.omegahat.org/bugs

R topics documented:

dbexists.DirectoryTable . 2
dbmethods . 3
DirectoryObjectTable . 5
unbound . 6
UserDatabase . 7

Index 9

1

http://www.omegahat.org/RObjectTables,
http://www.omegahat.org
http://www.omegahat.org/bugs

2 dbexists.DirectoryTable

dbexists.DirectoryTable

Methods for accessing DirectoryTable objects

Description

Methods for the DirectoryTable objects used for managing R variables (name-value bindings) in
a directory rather than in memory.

Usage

dbread.DirectoryTable(database, name, na=1)
dbwrite.DirectoryTable(database, name, object)
dbexists.DirectoryTable(database, name)
dbobjects.DirectoryTable(database)
dbremove.DirectoryTable(database, name)

Arguments

database the DirectoryTable object

name the name of the variable of interest

na a value which is to be returned if there is no variable in the table corresponding
to the requested name. This differentiates a non-existent variable from one with
a value of NULL, say.

object the value to be assigned to the specified variable.

Details

See the corresponding generic functions.

Value

See the corresponding generic functions.

Author(s)

Duncan Temple Lang

See Also

dbread, dbobjects, dbexists, dbwrite, newRFunctionTable, attach, detach

dbmethods 3

dbmethods Methods for user-defined tables

Description

These are generic functions that are extended by different classes of user-level tables that can be
attached to the search path. They are called when the corresponding user-level functions are called
for that ‘database’. A classes implementations of these methods must be globally accessible so that
they can be called when needed. This differs from closure tables which pass functions, (rather than
function names) to the C-level interface that implements the table’s connection to the R engine.

Usage

dbobjects(database)
dbexists(database, name)
dbread(database, name, na=1)
dbwrite(database, name, object)
dbremove(database, name)
dbattach(database)
dbdetach(database)
dbcanCache(database, name)

dbobjects.default(database)
dbexists.default(database, name)
dbread.default(database, name, na=1)
dbremove.default(database, name)
dbwrite.default(database, name, object)
dbattach.default(database)
dbdetach.default(database)
dbcanCache.default(database, name)

Arguments

database the database object which manages the name-value pairs.

name the name of the symbol in the database.

object an R object that is to be assigned to the specified symbol in the database.

na a specific object that can be returned to indicate that the database does not con-
tain an object of that name. This is similar to an "NA" while still allowing any
value bound to a variable to be returned. This uses the uniqueness of the objects
internal address. Its value is irrelevant, but the dbread method should not mdofy
it in anyway.

Details

These methods are the S4-compatible accessors for user-level tables that can be attached to the
search path. They correspond to the exists, get, remove, assign and objects that are used to
access and operate on variables within elements of the search path. These are not typically called
directly but by the R engine when accessing user-level tables that are implemented by particular
methods for these generic functions.

These functions are compatible with the equivalent S4 functions.

4 dbmethods

Value

dbexists returns a logical value indicating whether the database has a variable by that name.

dbread is equivalent to get and returns the value in the database assigned to the specified name.

dbwrite is equivalent to assign and returns the value being assigned, i.e. object. This allows one
to do chained assigments of the form x <- y <- 10.

dbremove is equivalent to remove and removes the binding for the specified name in the database,
discarding the value.

dbobjects is equivalent to objects and returns a character vector containing the names of all the
name-value bindings in the database.

dbcanCache returns a logical value indicating whether the value of the specified variable (given by
name) cannot be changed except for in R (TRUE) or whether it might be changed externally (FALSE).
This is used by the R engine to determine if it is entitle to cache the value associated with name. It
does this to avoid searching through the list of elements in the search path each time it wants the
value of a variable that it has already seen. This is useful when the data source can be modified
externally by other applications such as another thread in a Java application, the CORBA naming
service, etc.

dbattach and dbdetach have no (useful) return values and are invoked each time the user-level
table is added and removed from the search path, respectively. These can be used to perform
initialization and cleanup of values that the database uses to implement the other methods. For
example, it might create a directory for caching values when it is attached and remove it on detach.
Alternatively, it might open a connection to a database and close it when it is no longer needed.

Note

This is experimental. Make certain that important data is backed up before using this user-level
table interface.

See Also

newRFunctionTable newRClosureTable attach detach http://developer.r-project.org/
RObjectTables.pdf

Examples

fixedTable <- list(x=1, y = "abc",
z = list(a= rnorm(3), b = c(TRUE, FALSE, TRUE)),
cube = function(x) x^3)

dbread.FixedTable <- function(database, name) {
database[[name]]

}
dbremove.FixedTable <- function(database, name) {

stop("This is a read-only table")
}
dbexists.FixedTable <- function(database, name) {

any(name == names(database))
}

dbobjects.FixedTable <- function(database) {
names(database)

}

http://developer.r-project.org/RObjectTables.pdf
http://developer.r-project.org/RObjectTables.pdf

DirectoryObjectTable 5

class(fixedTable) <- c("FixedTable")
attach(newRFunctionTable(fixedTable), name = "my fixed list")

search()
objects(2)
objects("my fixed list")

exists("x", where = 2)
find(x)
x
get("x")
get("x", pos = 2)
get("x", pos = "my fixed list")

try(assign("myVar", 10, pos = 2))
try(remove("x", pos = "my fixed list"))
try(rm(x, pos = "my fixed list"))
try(rm(x, inherits = TRUE))

detach("my fixed list")

now the table has gone from the search list.
It is still available as ‘fixedTable’
search()

DirectoryObjectTable Create an R variable table using a directory

Description

This creates a DirectoryTable object which is used to manage R variables by reading and writing
them to disk in the directory associated with the table. The variables can be accessed in the usual
manner i.e. by name without the need for an explicit get. This gives S-like storage by writing the
objects to disk when they are assigned rather than at the end if the session.

Usage

DirectoryObjectTable(directory, create = TRUE)

Arguments

directory a string giving the name of the directory in which the variables will be stored.

create a logical value indicating whether the directory should be created if it does not
exist.

Details

This creates an object of class DirectoryTable that stores the name of the directory. This is passed
to the different db* methods (dbread, dbobjects, dbexists, dbwrite, . . . as the first argument).

6 unbound

Value

An object of class DirectoryTable that also inherits from UserDefinedDatabase. This is a list
containing a single element.

dir the fully expanded name of the directory associated with table.

Author(s)

Duncan Temple Lang

References

http://developer.r-project.org/RObjectTables.pdf http://www.omegahat.org/RinS for
storing R and S-Plus objects in a common format.

See Also

dbread, dbobjects, dbexists, dbwrite, newRFunctionTable, attach, detach

Examples

db <- DirectoryObjectTable("/tmp/myRData")
dbwrite(db, "x", 1:10)
dbwrite(db, "y", letters[1:3])
dbobjects(db)
dbread(db, "x")

attach(newRFunctionTable(db), name = "myRData")

assign("z", c(TRUE, FALSE), pos = "myRData")
get("z", pos = 2)
get("z")
z

detach("myRData")

unbound Get the object representing an unbound variable

Description

This retrieves the built-in R object representing the value of an unbound variable, i.e. an unde-
fined value. This can be returned by the dbread method of an object table if it does not have a
definition for the requested variable. This makes it easy to handle such cases in the R code rather
than in the underlying C-level interface that glues the internal engine and the user-level object table
implementations.

Usage

unbound()

Value

Returns the internal C-level value of R_UnboundValue.

http://developer.r-project.org/RObjectTables.pdf
http://www.omegahat.org/RinS

UserDatabase 7

Author(s)

Duncan Temple Lang <duncan@research.bell-labs.com>

See Also

dbread

Examples

Not run:
dbread.FixedList <-
function(database, name) {

if(is.na(name, match(names(database$elements))))
return(unbound())

return(database$elements[[name]])
}

End(Not run)

UserDatabase Create user-defined attach()able table

Description

These functions convert a user-level object into an R object that can be attached as an element of
the R search path. The newRFunctionTable works on objects that have methods for the dbexists,
dbread, ... functions.

newRClosureTable works on a collection of functions (usually sharing state with a common envi-
ronment) that are called directly by the C-level interface between the R engine and the user-level
table.

Usage

newRFunctionTable(db)
newRClosureTable(db)

Arguments

db a user-defined database object. When passed to newRClosureTable, this is a
list of functions that implement the assign, get, exists, remove, objects,
canCache, attach and detach. When passed to newRFunctionTable, this is an
object with methods for the dbread, dbwrite, dbexists, dbremove, dbcanCache,
dbattach, dbdetach functions.

Value

An object of class UserDefinedTable that is an external pointer to a C-level object that represents
the R table. This object can then be used in a call to attach.

8 UserDatabase

Note

This interface is experimental. Please ensure that important data is saved before using this.

See Also

attach http://developer.r-project.org/RTableObjects.pdf

Examples

source(system.file("examples", "ListTable.S", package ="RObjectTables"))
attach(newRClosureTable(createListHandlers(x=1:3, y = letters[1:4])), name ="my list table")
assign("x", 1, pos = "my list table")
objects(pos = 2)
exists("x", pos = 2)
remove("x", 1, pos = "my list table")
exists("x", pos = 2)

http://developer.r-project.org/RTableObjects.pdf

Index

∗Topic data
dbexists.DirectoryTable, 2
dbmethods, 3
DirectoryObjectTable, 5
unbound, 6
UserDatabase, 7

assign, 3, 4
attach, 2, 4, 6–8

dbattach, 4, 7
dbattach (dbmethods), 3
dbcanCache, 7
dbcanCache (dbmethods), 3
dbdetach, 4, 7
dbdetach (dbmethods), 3
dbexists, 2, 5–7
dbexists (dbmethods), 3
dbexists.DirectoryTable, 2
dbmethods, 3
dbobjects, 2, 5, 6
dbobjects (dbmethods), 3
dbobjects.DirectoryTable

(dbexists.DirectoryTable), 2
dbread, 2, 5–7
dbread (dbmethods), 3
dbread.DirectoryTable

(dbexists.DirectoryTable), 2
dbremove, 7
dbremove (dbmethods), 3
dbremove.DirectoryTable

(dbexists.DirectoryTable), 2
dbwrite, 2, 5–7
dbwrite (dbmethods), 3
dbwrite.DirectoryTable

(dbexists.DirectoryTable), 2
detach, 2, 4, 6
DirectoryObjectTable, 5

exists, 3

get, 3–5

newRClosureTable, 4
newRClosureTable (UserDatabase), 7

newRFunctionTable, 2, 4, 6
newRFunctionTable (UserDatabase), 7

objects, 3, 4

remove, 3, 4

unbound, 6
UserDatabase, 7

9

	dbexists.DirectoryTable
	dbmethods
	DirectoryObjectTable
	unbound
	UserDatabase
	Index

