
R documentation
of all in ‘pkg/SSOAP/man’

August 8, 2011

R topics documented:

.SOAP . 2
convertFromSOAP . 4
genSOAPClientInterface . 5
getReturnNode . 8
getSOAPType . 8
isHTTPError . 9
parseSOAP . 10
processWSDL . 11
server . 12
SOAPClientInterface-class . 13
SOAPFault . 14
SOAPHandlers . 15
SOAPNameSpaces . 16
SOAPResult . 17
SOAPResult-class . 18
SOAPServer . 19
SOAPServer-class . 20
SOAPServerDescription . 21
SOAPServerDescription-class . 22
SOAPType-class . 23
SOAPTypes . 24
toSOAP . 25
writeInterface . 26
writeSOAPBody . 27
writeTypes . 28
WSDLMethod-class . 29
WSDLParseHandlers . 30

Index 32

1

2 .SOAP

.SOAP Invoke a SOAP method

Description

This is used to call a SOAP method in a SOAP server, passing the relevant arguments from S and
converting the response into an S object. The communication between S and the SOAP server is
handled via connections.

Usage

.SOAP(server, method, ..., .soapArgs = list(), action, nameSpaces = SOAPNameSpaces(),
xmlns = NULL, handlers = SOAPHandlers(), .types = NULL,
.convert = TRUE, .opts = list(), curlHandle = getCurlHandle(),
.header = getSOAPRequestHeader(action, .server = server),
.literal = FALSE, .soapHeader = NULL, .elementFormQualified = FALSE,
.returnNodeName = NA)

Arguments

server a SOAPServer object

method the name of the SOAP method to invoke

... name=value arguments to pass to the

.soapArgs an alternative mechanism for passing arguments to the .SOAP call. This is a
list of named or unnamed values which is used as the arguments for the SOAP
method invocation.

action the SOAPAction string to put in the HTTP header. This is required. If it is an
object of class AsIs, it is left exactly as it is. This allows one to call this function
as .SOAP(...., action = I("einfo")) without having to provide a handler to bypass
the default action mechanism.

nameSpaces a named character vector giving the XML namespaces to add to the Body. These
are given as a named character vector with the names giving the local names-
pace identifier and the value being the URI corresponding to that namespace
identifier. For ease of use, one can identify the collections corresponding to
the 1999 or 2001 schema using the simpler strings "1.1" and "1.2" respec-
tively. If nameSpaces is a single string, we use it to index the element in the
.SOAPDefaultNameSpaces list.

xmlns the name space to use for the XML nodes which specify the actual method call,
i.e. within the BODY. This is either a single string, or a name-value pair given
as a character vector. The name is the namespace identifier and the value is the
URI.

handlers a collection of functions that, if present, are called at different points in the
SOAP invocation to process the input and output. These can be thought of
as event callbacks and include action for creating the final form of the SOA-
PAction string, converter for processing the XML returned by the SOAP server
in the case of a successful invocation, and so on.

.types [not yet implemented] allows one to explicitly control the conversion of the
arguments to the appropriate/desired SOAP type. This is useful when you know
what the server is expecting.

.SOAP 3

.convert a function, a logical value or a SOAPType. If this is a function, it should take two
arguments: the content to be converted from SOAP format to R and the target
type described as a SOAPType object. This should return an R object represent-
ing the SOAP content. If, alternativley, this is supplied as a logical value, this
controls whether the default converters are used (TRUE) or not (FALSE). These
converters are taken from the handlers argument. And finally, if .convert is a
SOAPType object, we call convertFromSOAP with the

.opts a named list of elements that are passed to the curlPerform function which ac-
tually invokes the SOAP method. These options control aspects of the HTTP
request, including debugging information that is displayed on the console, e.g.
.opts = list(verbose = TRUE)

curlHandle this is passed to curlPerform as the curlHandle argument. By providing this
as a parameter here, the user can reuse an existing curl handle with options
explicitly set just once. Additionally, one can control the connection to the Web
server using keep-alive connections, etc. to improve performance.

.header a named character vector of elements which are used in the HTTP header for the
SOAP request. These are calculated by default within the .SOAP call, but the
parameter allows them to be pre-computed and supplied in the call.

.literal a logical value indicating whether to use the literal encoding for serializing the
data being sent to and from the server.

.soapHeader this allows the caller to specify the SOAP content for the Header part of the
SOAP request. This is sometimes used to supply information such as login and
password or other forms of authentication and authorization. The value for this
parameter can be the text of the XML header node, an XML node itself, or
alternatively a function that returns such a node (or text with the XML content).
The function is called with the SOAP document being created and the name of
the SOAP method.

.elementFormQualified

a logical value. If this is FALSE, only the XML element identifying the method
call in the Body of the SOAP request uses the target namespace. The XML
nodes representing the arguments in the method call do not use this namespace
but are global. Alternatively, if this is TRUE, the target namespace of the schema
is defined as the default name space on the XML element for the method call
and so is inherited by the elements for the parameters.

.returnNodeName

the name of the node in the SOAP response that is the container for the content
of the response. This is often "return" but can be any legal XML node name
and is often given to us in a WSDL.

Value

An S object representing the return value from the SOAP method invocation.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

4 convertFromSOAP

See Also

writeSOAPMessage isHTTPError curlPerform postForm

Examples

Not run:
.SOAP(SOAPServer("services.xmethods.net", "soap"),

"getRate", country1="England", country2 = "Japan",
action="urn:xmethods-CurrencyExchange")

.SOAP(SOAPServer("services.xmethods.net", "soap/servlet/rpcrouter"),
"getPrice", "0596000278",
action="urn:xmethods-BNPriceCheck")

s <- SOAPServer("http://services.xmethods.net/soap")
.SOAP(s,

"getQuote", "AMZN",
action="urn:xmethods-delayed-quotes#getQuote")

.SOAP(SOAPServer("services.soaplite.com", "temper.cgi"),
"c2f", 37.5,
action="http://www.soaplite.com/Temperatures")

Different action and namespace.
Specify handlers=NULL to avoid the additional processing of the
SOAPAction string, i.e. the appending of the method name.
This kills off all the handlers. If we want to remove only the
"action" element, we have to be more explicit.

s1 <- SOAPServer("services.soaplite.com", "interop.cgi")
.SOAP(s1,

"echoString", "From R",
action="urn:soapinterop",
xmlns=c(namesp1="http://soapinterop.org/"),
handlers =NULL)

End(Not run)

convertFromSOAP Convert SOAP result to S object

Description

This generic function and its methods provide facilities for converting data from a SOAP XML
structure to a “value” object in R.

Usage

convertFromSOAP(val, type, nodeName = "return", ...)

genSOAPClientInterface 5

Arguments

val the XML object representing the data.

type the target “type” of object to which the XML should be converted.

nodeName the name of the node in the SOAP response that is the container for the content
of the response. This is often "return" but can be any legal XML node name
and is often given to us in a WSDL.

... additional arguments for (future) methods

Value

An R object of the type identified by type.

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

.SOAP

genSOAPClientInterface

Create R functions to access SOAP server methods

Description

This function creates function definitions, etc. that provide access to the methods described in the
SOAP server description details.

Usage

genSOAPClientInterface(operations = def@operations[[1]], def, name = def@name,
env = new.env(parent = globalenv()), where = globalenv(),
server = def@server, nameSpaces = def@nameSpaces,
addSoapHeader = FALSE, verbose = FALSE, force = FALSE)

Arguments

operations a list of the descriptions of the server’s methods. Each method description pro-
vides information about the parameters and the return value.

def the SOAPServerDescription-class object.

name currently unused

env an environment object. This is used ?

where the location (usually in the search path) where new S4 classes will be defined
to represent the complex return types. This can be any value that is acceptable
for the where argument of setClass, i.e. an integer, a package name (“pack-
age:name”) or, explicitly, an environment.

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

6 genSOAPClientInterface

server an object which will be used as the server in the SOAP calls. This provides the
user with a mechanism to provide an alternative server object such as one which
contains a password or which already has a connection to the SOAP server, or
controls the connection in different ways.

nameSpaces a character vector that identifies the namespace-URI mappings used for calls to
this server. This maps the namespace abbreviations to the actual URIs. This can
be a named character vector of these mappings, or alternatively a simple charac-
ter string that identifies the name of the element in the .SOAPDefaultNameSpaces
list. And if we don’t know the collection of namespaces, we use NA to indicate
that we shall determine this later.

addSoapHeader controls whether a .soapHeader parameter is added to each function that is
generated for the SOAP server. If this is a logical, TRUE indicates to add the
.soapHeader parameter; FALSE indicates it is omitted. If this is not a logi-
cal value, it is taken as the value to be supplied as the default value for the
.soapHeader parameter in each generated function.

verbose a logical indicating whether information about the processing should be dis-
played on the console, as it occurs.

force a logical value that controls how we handle the case where we would define an
S4 class corresponding to a data type in the schema but for which there already
exists a class of that name (within the environment in which we are defining the
schema-related classes). TRUE means that we will overwrite the existing class
definition; FALSE means to leave the existing class definition. This is useful
when we run the interface generation code a second time and so have existing
class defintions from the first run.

Value

An object of class SOAPClientInterface containing both functions and class definitions.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

processWSDL

Examples

kegg = processWSDL("http://soap.genome.jp/KEGG.wsdl")
note that we force the use of the 1.1 name spaces to get arrays
handled correctly on the server side.

iface = genSOAPClientInterface(def = kegg, nameSpaces = "1.1")

Not run:
This KEGG.wsdl is out of date

tmp = processWSDL(system.file("examples", "KEGG.wsdl", package = "SSOAP"))
iface = genSOAPClientInterface(tmp@operations[[1]], def = tmp, tmp@name, verbose=FALSE)

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

genSOAPClientInterface 7

End(Not run)

setAs("Definition", "character",
function(from)

structure(from@entry_id, names = from@definition))

setAs("ArrayOfPathwayElement", "character",
function(from) sapply(from, as, "character"))

o = iface@functions$list_organisms()

as(o, "character")

cat("See the file", system.file("examples", "KEGG.S", package = "SSOAP"), "for more examples\n")

Returns National Weather Service digital weather forecast data.
w = processWSDL("http://www.weather.gov/forecasts/xml/SOAP_server/ndfdXMLserver.php?wsdl")
f = genSOAPClientInterface(,w)

For the next 5 days from now.
str = f@functions$NDFDgenByDay(38.9936, -77.0224, Sys.time() + 60*24*60, 5, "12 hourly")

library(XML)
xmlToList(xmlParse(str, asText = TRUE))

Note that the result is a string containing XML. The WSDL identifies the result
as an xsd:string and does not tell us about the structure of the contents.

##
WABI

if(FALSE) {
This site was not available May 4th.

w = processWSDL("http://xml.nig.ac.jp/wsdl/ARSA.wsdl")
f = genSOAPClientInterface(,w)

f@functions$searchSimple("Homo sapiens", 1, 100)
x = f@functions$getENTRYbySPECIMEN("ATCC 43049", 1, 100)
x = f@functions$getENTRYbyScientificName("Escherichia coli", 1, 400)
els = readLines(textConnection(x))

get how many results are available in the database.
totalCount = as.integer(substring(els[1], nchar("hitscount = ")+1))
hits = els[-1] # the 400 results in the answer

x = f@functions$searchByXMLPath("/ENTRY/DDBJ/accessions/accn=’ab0001’",
"/ENTRY/DDBJ/primary-accession,/ENTRY/DDBJ/definition",
1, 100)

els = unlist(strsplit(x, "\\n"))
totalCount = as.integer(substring(els[1], nchar("hitscount = ")+1))

values = strsplit(els[-1], "\\t")
ans = structure(sapply(values, ‘[‘, 2), names = sapply(values, ‘[‘, 1))

}

8 getSOAPType

getReturnNode Get XML node from SOAP response

Description

Parse the XML content from the SOAP response and traverse the tree to find the node in the Body
element associated with the result of the request. It looks for a node named This attempts to be
helpful by taking input in various forms, i.e. text of the body of the HTTP response, header and
body in a SOAPHTTPReply object returned form .SOAP, or the root node of a previously parsed XML
tree.

Usage

getReturnNode(node, name = "return")

Arguments

node either an XML node that was obtained from parsing the text of the reply or the
SOAPHTTPReply object returned from the .SOAP call which contains the header
and body of the HTTP request, or alternatively this can be the text content from
the body of the HTTP response.

name the name of the node in the SOAP response that is the container for the content
of the response. This is often "return" but can be any legal XML node name
and is often given to us in a WSDL.

Value

An XMLNode object.

Author(s)

Duncan Temple Lang

See Also

.SOAP xmlTreeParse

getSOAPType Compute the SOAP type identifier for an S object

Description

This determines the SOAP type for the given S object so that it can be used in an XML element. It
returns a collection of name-value pairs (as a named character vector) which can be used as XML
attributes forthe element defining the value.

Usage

getSOAPType(obj, value = NULL)

isHTTPError 9

Arguments

obj the S object whose SOAP type information is to be determined

value for arrays, this specifies the type of the elements of that array.

Details

This consults SOAPTypes to find the types.

Value

A named character vector giving the XML attribute name and value pairs.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

writeSOAPMessage

isHTTPError Determines if an error occurred in an HTTP communication

Description

This examines the HTTP header information (computed via the curlPerform call that implements
the HTTP communication with the SOAP server) and determines if there was an error reported from
the server.

Usage

isHTTPError(response)

Arguments

response the header information computed by collecting the header lines from the SOAP
server’s HTTP response. This is currently done via the call to curlPerform in
the .SOAP function.

Details

This just looks at the status entry and compares it to the value 200.

The curlPerform is capable of performing redirections, etc. to handle manageable errors. See the
options for that function.

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

10 parseSOAP

Value

A logical value indicating whether there was an error (TRUE) or not (FALSE).

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

.SOAP curlPerform

parseSOAP Parse XML message

Description

This is a convenience function to parse the SOAP message returned from a server and retrieve the
payload of the message as an XML tree in S.

Usage

parseSOAP(xmlSource, header = FALSE, reduce = TRUE, ...,
fullNamespaceInfo = TRUE)

Arguments

xmlSource an string giving the name of an file or URL containing the XML content, or a
string containing the XML content itself.

header ignored

reduce a logical value indicating whether to return the top-most XML node of the Body
or to return the entire XML tree read from xmlSource. If this is true, we find
the Body node and return its first child.

... arguments that are passed directly to xmlTreeParse without being processed by
this function.

fullNamespaceInfo

a logical value that is passed on to xmlTreeParse when parsing the SOAP re-
sponse This controls how the namespace information on each XML node is
represented, with TRUE causing the prefix and URI to be included rather than
just the prefix.

Value

An XMLNode object.

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

processWSDL 11

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

fromXML

processWSDL Read and process a Web Service Description Language file

Description

This reads and converts a WSDL file for a server into a collection of functions and methods.

Usage

processWSDL(fileName = "KEGG.wsdl", handlers =
WSDLParseHandlers(fileName), nameSpaces = character(),
useInternalNodes = TRUE, verbose = FALSE, port = 1L)

Arguments

fileName the name of the WSDL file or URI.

handlers a list of handler functions that are passed to xmlTreeParse to perform transfor-
mations on the XML nodes as the are parsed and converted to R objects. The
default handlers drop comments and take care of importing files that are refer-
enced via <wsdl:import> nodes.

nameSpaces a character vector that identifies the namespace-URI mappings used for calls to
this server. This maps the namespace abbreviations to the actual URIs. This can
be a named character vector of these mappings, or alternatively a simple charac-
ter string that identifies the name of the element in the .SOAPDefaultNameSpaces
list. And if we don’t know the collection of namespaces, we use NA to indicate
that we shall determine this later.

useInternalNodes

a logical value indicating whether to use internal/C-level nodes for the XML tree
or to use R objects representing the nodes.

verbose a logical value indicating whether to emit messages to the console signalling
progress being made and what elements are being processed. This is passed to
processSchemaTypes.

port a number or string that is used to identify which of the port elements to use
in the WSDL. This allows the caller to specify whether they want to use, e.g.,
SOAP 1.1 or SOAP 1.2 or SOAP PUT if the WSDL provides more than one of
these

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

12 server

Value

An object of class SOAPServerDescription.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

UseDashInSOAPNames is an R option that can be set by the user that is understood by this pack-
age to control whether to either leave SOAP method names as-is, or if FALSE, to remove _ in the
names and capitalize the first character in all but the first word of the name. In other words, if
UseDashInSOAPNames is set to FALSE, the name abc_def_ghi is mapped to abcDefGhi. By de-
fault, the value is unset and treated as TRUE, so dashes are preserved.

Examples

tmp = processWSDL(system.file("examples", "KEGG.wsdl", package = "SSOAP"))

The first set of operations, and the method "color_pathway_by_objects"
o = tmp@operations[[1]][["color_pathway_by_objects"]]
names(o@parameters)
o@parameters[["fg_color_list"]]
o@returnValue

ff = genSOAPClientInterface(tmp@operations[[1]], def = tmp, tmp@name, verbose=FALSE)

ff$functions$get_all_neighbors_by_gene(kid="eco:b0002", threshold= as.integer(500), orgs = c("ecs","ypk"))

Not run:
x = ff@functions$get_paralogs_by_gene("eco:b0002", 1, 10)

End(Not run)

tp = get(".operation", environment(ff@functions$get_paralogs_by_gene))@returnValue

A different WSDL file.
tmp = processWSDL(system.file("examples", "XMethodsFilesystemService.wsdl.xml", package = "SSOAP"))

Not run:
cs = processWSDL("http://www.chemspider.com/MassSpecAPI.asmx?WSDL", port= 3)
cs = processWSDL("http://www.chemspider.com/MassSpecAPI.asmx?WSDL", port = "MassSpecAPIHttpGet")

End(Not run)

server Information about a programmatically generated function

SOAPClientInterface-class 13

Description

These functions provide information about a function that was programmatically created by pro-
cessing a WSDL file. It allows the R user to find out characteristics of these functions without
having to understand the particular structure of the functions, i.e. the environments and the meta-
data being stored in that environment and the default server object in a parent environment shared
by all the generated functions.

The help function merely makes the regular help function in base generic.

When these functions are serialized and written to a file, these methods no longer work at present.
This can be remedied.

Usage

server(fun, ...)
returnType(fun, ...)
returnConverter(fun, ...)

Arguments

fun the function object whose characteristics are being queried. This is a progra-
matically generated function as part of the WSDL processing. This should be of
class WSDLGeneratedSOAPFunction.

... additional arguments so that these generic functions can be useful to other pack-
ages.

Value

These merely provide information about the contents of the environment of the generated function.

Note

When they are serialized to a file, this information is no longer available at present

Author(s)

Duncan Temple Lang

See Also

processWSDL

SOAPClientInterface-class

Representation of machine-generated interface to SOAP methods and
classes

Description

This is a simple class that combines a list of functions and a list of classes that are machine-
generated to provide an R interface to a SOAP server. It is just a mechanism for combining the
code.

14 SOAPFault

Objects from the Class

We use the function genSOAPClientInterface to create instances of this class. Objects can be
created by calls of the form new("SOAPClientInterface", ...).

Slots

functions: Object of class "list". A list of the functions that are proxies to the SOAP methods.

classes: Object of class "list". A list of classes defined in support of the functions. These
correspond to the new data types defined by the SOAP server.

Methods

No methods defined with class "SOAPClientInterface" in the signature.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

genSOAPClientInterface

SOAPFault Create a SOAP Fault object

Description

This creates an object representing a SOAP fault object returned from a a SOAP server. It creates an
S4 object of the appropriate class, either one of the built-in SOAP fault classes or a general SOAP
fault object.

Usage

SOAPFault(node)

Arguments

node the top-level XML node from the SOAP response giving the fault information

Value

An object derived from SOAPFault. Can be one of SOAPVersionMismatchFault, SOAPMustUnderstandFault,
SOAPClientFault or SOAPGeneralFault.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

SOAPHandlers 15

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

.SOAP

SOAPHandlers Get SOAP function handlers

Description

This returns a collection of functions that are used by the .SOAP function to control exactly how the
HTTP request and SOAP message is created and how the result is processed. Values are merged
with the values from .SOAPDefaultNameSpaces.

This is a convenient mechanism for specifying the collection of functions to use to parameterize the
different aspects of the SOAP mechanism in S.

Usage

SOAPHandlers(..., include = character(0), exclude = character(0))

Arguments

... name=function pairs giving values to be returned in the list of functions. These
override corresponding elements in .SOAPDefaultNameSpaces.

include a character vector giving the names of the elements to include. This is used
to identify (a few) elements that are to be kept from the defaults identified by
version.

exclude a character vector giving the names of the elements to discard. This is usu-
ally deployed when we want to keep a large number of elements and it is more
convenient to explicitly exclude some.

Value

A named list of functions. The names correspond to the different elements that are accessed by the
.SOAP function. Currently, these are

action convert the user-specified SOAPAction to the target one. By default, this ap-
pends #methodName to the user’s value. This takes four arguments: the user’s ac-
tion, the name of the method, the SOAP server object and the vector of request-
specific namespaces (i.e. the xmlns argument for .SOAP.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP,

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs
http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP

16 SOAPNameSpaces

See Also

SOAPNameSpaces .merge

Examples

SOAPHandlers()
SOAPHandlers(action = function(action, method, server, xmlns) action)

SOAPHandlers(exclude="action")

SOAPNameSpaces Get SOAP namespace definitions

Description

This is a convenience function that makes it easy to in-line the specification of the top-level or
global SOAP namespaces within a .SOAP call. It provides a way to cumulate namespace identifiers
and URIs into a named vector by specifying the relevant collection within the “catalog” of SOAP-
namespace collections and to augment that collection, override elements and/or include and exclude
certain elements by name.

Usage

SOAPNameSpaces(..., include = character(0), exclude = character(0),
version = getOption("SSOAP:DefaultNamespace"))

Arguments

... an arbitrary number of id-URI pairs that define a namespace. These are included
in the collection returned from this function along with any values identified via
the version argument in the .SOAPDefaultNameSpaces list.

include a character vector giving the names of the elements to include. This is used
to identify (a few) elements that are to be kept from the defaults identified by
version.

exclude a character vector giving the names of the elements to discard. This is usu-
ally deployed when we want to keep a large number of elements and it is more
convenient to explicitly exclude some.

version a name that identifies an element in the .SOAPDefaultNameSpaces list that is
used to get the default values. If this does not match a name in that list, no
defaults are used and only the values in ... are used.

Value

A named vector giving the id-URI pairs of namespaces.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

SOAPResult 17

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

.merge

Examples

SOAPNameSpaces()
SOAPNameSpaces(omegahat="http://www.omegahat.org",

r = "http://www.r-project.org")

SOAPNameSpaces(omegahat="http://www.omegahat.org",
r = "http://www.r-project.org", include="SOAP-ENV")

SOAPNameSpaces(omegahat="http://www.omegahat.org",
r = "http://www.r-project.org", exclude="xsd")

SOAPNameSpaces(omegahat="http://www.omegahat.org",
r = "http://www.r-project.org",
xsd = "my own XSD URI")

SOAPResult Create an object to represent the raw result of a SOAP invocation

Description

This function creates an object of class SOAPResult which is used to represent both the header and
the body of the HTTP response from a SOAP invocation. Such an object is created in the .SOAP
function and used to convert the body into an S value.

Usage

SOAPResult(content, header, obj = new("SOAPResult"))

Arguments

content a character vector representing the body of the HTTP response.

header a named list of name-value pairs giving the details of the header of the HTTP
response.

obj an instance of the class that we are creating, derived from SOAPResult.

Value

An object of class SOAPResult.

content Description of ’comp1’

header Description of ’comp2’

...

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

18 SOAPResult-class

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP

See Also

.SOAP fromXML isHTTPError

SOAPResult-class Description of a the result of a SOAP request

Description

This class is used to provide access to the result of the SOAP request over HTTP. It separates the
result into the header and body/content returned by the HTTP server.

Objects from the Class

This is not typically used except within code in the SSOAP package when it is returned from a call
to .SOAP. Objects can be created by calls of the form new("SOAPResult", ...).

Slots

header: Object of class "list". A named list of values from the header of the HTTP communica-
tion returned by the SOAP server in response to a SOAP request.

content: Object of class "character". The body or content of the HTTP request. The header
field provides information about how to interpret the content in this field, e.g. the style of
encoding.

Methods

convertFromSOAP signature(val = "SOAPResult"): converts the value in the content slot to
an R object, using the fields in the header slot to interpret the content appropriately.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

.SOAP

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

SOAPServer 19

SOAPServer Create a SOAP server object

Description

These are constructors for the basic SOAPServer class which represent the location of the web
services and methods. The basic SOAPServer-class is used to identify the host, port and URL of
a SOAP server. The dynamic SOAP server is represented by the class DynamicSOAPServer-class
and that contains not only the location of the SOAP server, but also information about its methods
and data types. This information is typically read from a Web Services Description Language
(WSDL) file.

We can use the form server$method(arg1, arg2, ...) to invoke a method in both types of
server.

Usage

SOAPServer(host, url, port = NA, s = new(className))
dynamicSOAPServer(iface, obj = new("DynamicSOAPServer"))

Arguments

host typically, the name of the host machine, e.g. "www.omegahat.org". Alterna-
tively, a complete URL (e.g. http://www.omegahat.org/SOAP) may be given
as the value for host and the individual parts are extracted from this.

url the file/URL within the server that contains the SOAP server. If this is omitted,
we attempt to find the value from the value of host.

port the port number on which the server is listening. This is typically 80, the stan-
dard HTTP port. However, one can specify this when creating the S server object
to identify a different port. This is useful when testing a server since one can
use a user-level port. It is left as NA if not specified to indicate that it was not
explicitly set to 80.

s the object being created and initialized. Having this as an argument allows the
caller to specify the class of the desired object and supply a partially initialized
value and still get the “standard” initialization for the server object. className
is computed in the body of the function and this mechanism works via lazy
evaluation.

iface this is an object of class SOAPClientInterface-class typically returned from
a call to genSOAPClientInterface. This represents the collection of methods
that the SOAP server provides. .

obj the object that will be returned from the dymanicSOAPServer function. This
is specified with a default value so that this constructor can be easily reused
for derived classes. Typically, a user-level call to this function will not need to
specify this.

Value

An object of class HTTPSOAPServer, FTPSOAPServer or SOAPServer. If the host is specified with
an ftp: or http: prefix, an object of class FTPSOAPServer or HTTPSOAPServer respectively is
returned. Otherwise, a generic SOAPServer is created.

20 SOAPServer-class

Note

In the future, we will use a SOAPConnection class that builds on the server and maintains a con-
nection to the server. The URL may get dropped from the server as we can use the same basic host
and port combination with different URLs for different requests. Experience will give us a better
handle on an appropriate interface.

Also, we may store a server-specific, default SOAPAction value in the server.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

.SOAP $

Examples

server = SOAPServer("www.nanonull.com", "TimeService/TimeService.asmx")

SOAPServer-class Classes for SOAP Server object

Description

These classes provide a way to describe the location of a SOAP server. This is separate from the
servers actions. Rather, we use this to represent the identity of the server in terms of its Web address,
i.e. the machine name or IP address, port number and URI or path within the server. The different
classes represent the communication protocol, typically HTTP or HTTPS, i.e. HTTP over SSL, the
secure communication protocol.

A DynamicSOAPServer might be better termed a “compiled” server. It contains information about
the methods and data types accessible via the server. This information is converted into R classes
and functions that can be used to invoke the server’s methods.

DynamicSOAPServer does not extend SOAPServer currently. Rather, it contains a SOAPServer.
This is because we need to be able to determine the protocol and so have different types of SOAPServer
objects associated with the interface methods. This class hierarchy may change in the future.

Objects from the Class

The function SOAPServer is used as the general constructor. Alternatively, one can use the new
syntax, new("HTTPServer", host = "www.omegahat.org", url = "theServer")

Slots

host: Object of class "character". The machine name or IP address of the server.
port: Object of class "integer". The port number, if other than the default HTTP port 80.
url: Object of class "character". The document within the server that is the location of the

server.

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

SOAPServerDescription 21

Methods

\$ signature(x = "SOAPServer", name = "character"): returns a function that will invoke
the server’s method whose name is given by name. This is merely syntactic sugar to allow the
expression server$foo(1, 2, 3) to invoke the method foo in the remote server.

\$ signature(x = "DynamicSOAPServer", name = "character"): returns a function that will
invoke the server’s method whose name is given by name. This is merely syntactic sugar to
allow the expression server$foo(1, 2, 3) to invoke the method foo in the remote server.

names signature(x = "DynamicSOAPServer") returns the names of the server’s available meth-
ods.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

SOAPServer

SOAPServerDescription Constructor for describing methods and data structures of a SOAP
server

Description

This function creates an instance of the class SOAPServerDescription (or the value of obj) and
populates it with the specified collections of SOAP operations and data structure types, and infor-
mation about the location of the SOAP server. This description can then be used to generate code
to interface to the server’s methods (see genSOAPClientInterface). The information is typically
generated by reading the WSDL file, e.g. via processWSDL.

Usage

SOAPServerDescription(name, server, operations, types,
nameSpaces = NA, obj = new("SOAPServerDescription"))

Arguments

name a string (character vector) giving the name of the SOAP server. This typically
comes from

server an object of class SOAPServer that describes the location of the Web service,
giving the URL, port, path to the services

operations a list describing the operations or methods provided by the Web service

types a list describing the data types used by the Web service

obj an instance of the desired result whose slots are filled in during the call. This
should be “compatible” with (i.e. extend) SOAPServerDescription.

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

22 SOAPServerDescription-class

nameSpaces a character vector that identifies the namespace-URI mappings used for calls to
this server. This maps the namespace abbreviations to the actual URIs. This can
be a named character vector of these mappings, or alternatively a simple charac-
ter string that identifies the name of the element in the .SOAPDefaultNameSpaces
list. And if we don’t know the collection of namespaces, we use NA to indicate
that we shall determine this later.

Value

The object obj returned with the relevant fields filled in with values

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP

See Also

processWSDL

SOAPServerDescription-class

Description of a SOAP Server’s methods and data types

Description

This represents a complete description of the methods and associated data types for inputs and
outputs of a SOAP server.

Objects from the Class

Objects can be created by calls of the form new("SOAPServerDescription", ...). More typi-
cally, however, one will use processWSDL to create such an object.

Slots

name: Object of class "character". The name of the server.
server: Object of class "SOAPServer". The details of how to identify or connect to the server

object.
operations: Object of class "list". A list of the sets of operations/methods. A server may have

more than one collection of methods. This list is the top-level container and each element is
itself a list containing WSDLMethod objects.

types: Object of class "list". The named collection of data types defined within the WSDL for
the server.

nameSpaces: a character vector that identifies the namespace-URI mappings used for calls to this
server. This maps the namespace abbreviations to the actual URIs. This can be a named
character vector of these mappings, or alternatively a simple character string that identifies
the name of the element in the .SOAPDefaultNameSpaces list. And if we don’t know the
collection of namespaces, we use NA to indicate that we shall determine this later.

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP

SOAPType-class 23

Methods

No methods defined with class "SOAPServerDescription" in the signature.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

processWSDL

Examples

serverDesc = processWSDL(system.file("examples", "KEGG.wsdl", package = "SSOAP"))

SOAPType-class Classes for representing types for SOAP values

Description

These classes are for representing types from SOAP-related schema. They are used in describing
SOAP methods read from a Web Service Description Language (WSDL) file.

Objects from the Class

Objects can be created by calls of the form new("SOAPType", ...). More typically, however,
these are created by reading a WSDL file using processWSDL.

Slots

name: Object of class "character". The name for the type of value being described.

ns: Object of class "character". The shorthand for the XML namespace associated with this
type.

nsuri: Object of class "character". The URI/identifier that identifies the XML namespace asso-
ciated with this type.

Methods

toSOAP signature(obj = "vector", con = "ANY", type = "SOAPType"): convert an R ob-
ject to its SOAP representation for the specified SOAP type.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

24 SOAPTypes

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

processWSDL

SOAPTypes Data objects used in SSOAP

Description

These are S objects that store default data for the SOAP functions.

SOAPTypes is a list mapping the type of a primitive S object (typically computed via typeof) to
a SOAP type, typically given as a named character vector. The name-value pair gives an XML
attribute name and value which identifies the SOAP type (e.g. xsi:type = xsd:string).

SOAPPrimitiveConverters is a list of functions that handle mapping SOAP values to S primitive
values. These are indexed by the different primitive SOAP type values, e.g. xsd:string, xsd:boolean,
etc.

.SOAPDefaultNameSpaces is a named list in which each element is a named-character vector giving
the namespace identifier and URI (e.g. xsi="http://www.w3.org/2001/XMLSchema-instance") that
are added to the top-most node of the XML message, i.e. in the Envelope node. The names of the
list are used to index the different collections of namespaces, making .SOAPDefaultNameSpaces
act like a catalog of SOAP specifications.

.SOAPDefaultHandlers is a collection of named functions that are used to parameterize the way
the .SOAP functions works. These functions are callbacks that can modify the way the HTTP request
and SOAP message are constructed, and how the response is processed.

The idea is that one can change these globally to customize the SSOAP package to local needs.

Usage

SOAPTypes
SOAPPrimitiveConverters
SOAPNameSpaces

Source

SSOAP package

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs
http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

toSOAP 25

toSOAP Convert S object to SOAP format

Description

This converts an S object to its SOAP representation, writing it out to a connection.

Usage

toSOAP(obj, con = xmlOutputBuffer(header = ""), type = NULL,
literal = FALSE, elementFormQualified = FALSE, ...)

Arguments

obj the S object to be described in SOAP format

con the connection on which to write the SOAP representation, usually a connection
to a SOAP server.

type an object that describes the target type, if available. This is typically an object
which is derived from SOAPType-class that describes the details of the partic-
ular type.

literal a logical value indicating whether to use the literal format of the encoding for
the seralization of objects.

elementFormQualified

a logical value that indicates whether the nodes are to use no namespace or the
target namespace of the schema in which they were defined.

... additional parameters for the methods of this generic

Value

The side-effect of writing the representation to the connection is the important aspect of this.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

.SOAP

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

26 writeInterface

writeInterface Serialize generated interface to a file

Description

This function allows the user to take a programmatically generated interface such as with genSOAPClientInterface
and write the code to a file for inclusion in an R package or to be source’d into a different R session.

Note that this is not essential. One can save the interface generated by genSOAPClientInterface
in RDA format and then use load that into a different R session, potentially on a different machine,
and the interface will work as is.

Usage

writeInterface(iface, file = stdout(), where = globalenv())

Arguments

iface the interface object created via a call to genSOAPClientInterface

file the name of the file to which to write the code.

where the position or package name used to find the class definitions associated with
this interface. This is passed to getClass.

Details

Currently, this has to handle deparseing S4 objects directly. Also, it undoes the use of environments
within the functions to store the "cached" information about the operation and the SOAP server
location. Instead, it adds these as explicit parameters and to the body of the code.

Value

This function is used for its side effect of writing content in the specified file

Author(s)

Duncan Temple Lang

See Also

genSOAPClientInterface processWSDL

writeSOAPBody 27

writeSOAPBody Write SOAP message elements directly to connection

Description

These functions write the different parts of the SOAP request directly to an S connection. This
means that they generate their content for the connection in order.

Usage

writeSOAPBody(method, ..., xmlns = NULL, con, .types = NULL,
.soapArgs = list(), .literal = FALSE,
.header = NULL, .elementFormQualified = FALSE)

writeSOAPEnvelope(con, nameSpaces = SOAPNameSpaces())

writeSOAPMessage(con, nameSpaces, method, ..., .types = NULL,
xmlns = NULL, .soapArgs = list(), .literal = FALSE,
.soapHeader = NULL, .elementFormQualified = FALSE)

Arguments

method the name of the SOAP method to be invoked
... For writeSOAPBody and writeSOAPMessage, these are the name-value argu-

ments for the SOAP method being called.
.soapArgs an alternative mechanism for passing arguments to the .SOAP call. This is a

list of named or unnamed values which is used as the arguments for the SOAP
method invocation.

xmlns the namespace given either as a simple string or as a named character vector
of namespace URIs and local names. (Currently only one namespace is used).
This is used for the top-level element of the node within the SOAP Body, corre-
sponding to the actual request.

con the connection object on which to write the HTTP and SOAP content
.types a list parallelling the arguments to the SOAP method (i.e. . . . or .soapArgs)

that specify the expected/required type of the individual arguments. This in-
formation is typically constructed from the WSDL (Web Services Description
Language) if that is available. Otherwise, this can be an empty list in which case
no constraints are placed on the arguments and the values are used as-is.

nameSpaces a named character vector giving the namespace identifier and URI pairs. These
are added as attributes in the SOAP Body element of the generated XML.

.literal a logical value indicating whether to use the literal format of the encoding for
the seralization of objects.

.header a character string (or NULL that is written as part of the SOAP header (not the
HTTP header), before any other output, i.e. before the <SOAP-ENV:Body> is
emitted. This is passed as the first argument to writeSOAPHeader.

.soapHeader a string, an XML node or a function that can be optionally specified to add
content to the SOAP message as the header of the envelope. This is used in
some Web services to provide transaction information such as a authentication
and security details. See the eBaySvc.wsdl for an example. If this is a function,
it is called with the value of con as the only argument. One might use a closure
to include the "private" and auxiliary information.

28 writeTypes

.elementFormQualified

a logical value. If this is FALSE, only the XML element identifying the method
call in the Body of the SOAP request uses the target namespace. The XML
nodes representing the arguments in the method call do not use this namespace
but are global. Alternatively, if this is TRUE, the target namespace of the schema
is defined as the default name space on the XML element for the method call
and so is inherited by the elements for the parameters.

Value

For each function, the return value is irrelevant. It is the side-effect of writing to the connection that
is used for.

Note

A different approach is to create the XML “payload” first as a string (by creating it as an XML
tree and then serializing that to a buffer). This allows one to add the Content-Length to the HTTP
header.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

.SOAP

writeTypes Output SOAP type information for an S object.

Description

This is used in the toSOAP methods when writing an S object to a SOAP connection. It writes
the SOAP attributes representing the SOAP type for the S object being serialized to the SOAP
connection.

Usage

writeTypes(x, con, types = getSOAPType(x))

Arguments

x the S object being serialized to the SOAP connection

con the S connection object to which to write the type information attributes

types the type information attributes which are computed by calling getSOAPType by
default.

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

WSDLMethod-class 29

Value

The string giving the SOAP type attributes that are written to the connection.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

toSOAP

WSDLMethod-class Description of a SOAP method

Description

This class is used to describe the elements of a SOAP method as described in a Web Service De-
scription Language (WSDL) file.

Objects from the Class

Objects can be created by calls of the form new("WSDLMethod", ...).

Slots

name: Object of class "character". The name of the method.

parameters: Object of class "list". An ordered list of the parameter types for this method.

returnValue: Object of class "SOAPType". The type of the return value.

action: Object of class "SOAPAction". The SOAP action value associated with this method.

namespace: Object of class "character". The namespace associated with this method.

use: a character vector with elements for input and output indicating whether the parts of the
message are encoded using some encoding rules, or definte the schema. Each value is either
“literal” or “encoded”. See http://www.w3.org/TR/wsdl, section 3.5.

documentation: a string providing a human-readable (or more specifically arbitrary formed text)
supposed to describe the method

bindingStyle: the format/protocol of the XML messages sent to invoke and reply to a method,
e.g. document and RPC are the most common ones. But others are possible.

header: a list. This provides information about additional HTTP header information should be
passed in the request for this operation. For example, this might be tickets/cookies that autho-
rize the requestor to make the request.

returnNodeName the name of the node in the SOAP response that is the container for the content
of the response. This is often "return" but can be any legal XML node name and is often
given to us in a WSDL.

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs
http://www.w3.org/TR/wsdl

30 WSDLParseHandlers

Methods

No methods defined with class "WSDLMethod" in the signature.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.w3.org/TR/SOAP/ http://www.omegahat.org/SSOAP, http://www.omegahat.org/
bugs.

See Also

processWSDL

WSDLParseHandlers Creates functions for XML parser for processing import/include XML
nodes

Description

This function is used, by default, when using regular R-level nodes (as opposed to internal/C-level
nodes) when parsing an XML schema document. The function returns two functions which are used
by the XML parser xmlTreeParse to convert import and include nodes within the XML schema by
resolving the name of the referenced file and reading that document as another XML schema and
inserting the results into the document.

It is often more convenient to use internal/C-level nodes and so use xmlParse rather than xmlTreeParse.
The former does not use these handler functions.

Usage

WSDLParseHandlers(baseURI, verbose = FALSE, keepSchema = FALSE)

Arguments

baseURI the name of the parent/containing document being read, relative to which the
href attribute of an import or include node will be resolved.

verbose a logical indicating whether to emit messages to the console when processing
an import or include node.

keepSchema a logical value indicating whether to assign the resulting schema from process-
ing an include or import node to the list of schema, indexed by the namespace
prefix.

Value

A named list of functions.

Author(s)

Duncan Temple Lang

http://www.w3.org/TR/SOAP/
http://www.omegahat.org/SSOAP
http://www.omegahat.org/bugs
http://www.omegahat.org/bugs

WSDLParseHandlers 31

References

The XML schema specification at http://www.w3.org/XML/Schema.

See Also

readSchema in the XMLSchema package and processWSDL.

http://www.w3.org/XML/Schema

Index

∗Topic IO
getReturnNode, 8
SOAPServer-class, 20
writeInterface, 26

∗Topic classes
SOAPClientInterface-class, 13
SOAPResult-class, 18
SOAPServer-class, 20
SOAPServerDescription-class, 22
SOAPType-class, 23
WSDLMethod-class, 29

∗Topic connection
.SOAP, 2
convertFromSOAP, 4
getSOAPType, 8
isHTTPError, 9
parseSOAP, 10
processWSDL, 11
SOAPFault, 14
SOAPHandlers, 15
SOAPNameSpaces, 16
SOAPServer, 19
toSOAP, 25
writeSOAPBody, 27
writeTypes, 28

∗Topic datasets
SOAPTypes, 24

∗Topic interface
.SOAP, 2
convertFromSOAP, 4
genSOAPClientInterface, 5
getSOAPType, 8
isHTTPError, 9
parseSOAP, 10
processWSDL, 11
SOAPFault, 14
SOAPHandlers, 15
SOAPNameSpaces, 16
SOAPResult, 17
SOAPServer, 19
SOAPServerDescription, 21
toSOAP, 25
writeSOAPBody, 27

writeTypes, 28
∗Topic programming

genSOAPClientInterface, 5
getReturnNode, 8
server, 12
writeInterface, 26
WSDLParseHandlers, 30

.SOAP, 2, 5, 8–10, 15–18, 20, 24, 25, 28

.SOAPDefaultHandlers (SOAPTypes), 24

.SOAPDefaultNameSpaces (SOAPTypes), 24
$, 20
$,DynamicSOAPServer-method

(SOAPServer-class), 20
$,SOAPServer-method (SOAPServer-class),

20

as.SOAPDate (toSOAP), 25
as.SOAPDateTime (toSOAP), 25

BasicSOAPType-class (SOAPType-class), 23

convertFromSOAP, 4
convertFromSOAP,SOAPResult-method

(convertFromSOAP), 4
curlPerform, 3, 4, 9, 10

dynamicSOAPServer (SOAPServer), 19
DynamicSOAPServer-class, 19
DynamicSOAPServer-class

(SOAPServer-class), 20

fromXML, 11, 18

genSOAPClientInterface, 5, 14, 19, 21, 26
getClass, 26
getReturnNode, 8
getSOAPType, 8, 28

help (server), 12
HTTPSOAPServer-class

(SOAPServer-class), 20
HTTPSSOAPServer-class

(SOAPServer-class), 20

isHTTPError, 4, 9, 18

32

INDEX 33

load, 26

names,DynamicSOAPServer-method
(SOAPServer-class), 20

new, 20

parseSOAP, 10
postForm, 4
processSchemaTypes, 11
processWSDL, 6, 11, 13, 21–24, 26, 30, 31

returnConverter (server), 12
returnConverter,WSDLGeneratedSOAPFunction-method

(server), 12
returnType (server), 12
returnType,WSDLGeneratedSOAPFunction-method

(server), 12

save, 26
server, 12
server,WSDLGeneratedSOAPFunction-method

(server), 12
setClass, 5
SOAPClientInterface-class, 19
SOAPClientInterface-class, 13
SOAPFault, 14
SOAPHandlers, 15
SOAPNameSpaces, 16, 16
SOAPPrimitiveConverters (SOAPTypes), 24
SOAPResult, 17
SOAPResult-class, 18
SOAPServer, 19, 20, 21
SOAPServer-class, 19
SOAPServer-class, 20
SOAPServerDescription, 12, 21, 21
SOAPServerDescription-class, 5
SOAPServerDescription-class, 22
SOAPType-class, 25
SOAPType-class, 23
SOAPTypeReference-class

(SOAPType-class), 23
SOAPTypes, 24
SOAPVoidType-class (SOAPType-class), 23

toSOAP, 25, 28, 29
toSOAP,ANY,ANY,ArrayType-method

(toSOAP), 25
toSOAP,ANY,ANY,ClassDefinition-method

(toSOAP), 25
toSOAP,ANY,ANY,SOAPType-method

(toSOAP), 25
toSOAP,list,ANY,NULL-method (toSOAP), 25
toSOAP,POSIXt,ANY,SOAPDate-method

(toSOAP), 25

toSOAP,POSIXt,ANY,SOAPDateTime-method
(toSOAP), 25

toSOAP,POSIXt,ANY,SOAPTime-method
(toSOAP), 25

toSOAP,vector,ANY,NULL-method (toSOAP),
25

toSOAP,vector,ANY,PrimitiveSOAPType-method
(toSOAP), 25

toSOAP,vector,ANY,SOAPType-method
(toSOAP), 25

toSOAP,vector,connection,PrimitiveSOAPType-method
(toSOAP), 25

toSOAP,vector,XMLInternalDocument,PrimitiveSOAPType-method
(toSOAP), 25

toSOAP,vector,XMLInternalElementNode,BasicSOAPType-method
(toSOAP), 25

toSOAP,vector,XMLInternalElementNode,missing-method
(toSOAP), 25

typeof, 24

VirtualSOAPClass-class
(SOAPType-class), 23

VirtualXMLSchemaClass-class
(SOAPType-class), 23

writeInterface, 26
writeSOAPBody, 27
writeSOAPBody,ANY,ANY,connection-method

(writeSOAPBody), 27
writeSOAPBody,ANY,ANY,XMLInternalDocument-method

(writeSOAPBody), 27
writeSOAPEnvelope (writeSOAPBody), 27
writeSOAPEnvelope,connection-method

(writeSOAPBody), 27
writeSOAPEnvelope,XMLInternalDocument-method

(writeSOAPBody), 27
writeSOAPMessage, 4, 9
writeSOAPMessage (writeSOAPBody), 27
writeTypes, 28
WSDLMethod-class, 29
WSDLParseHandlers, 30

xmlParse, 30
xmlTreeParse, 8, 10, 11, 30

	.SOAP
	convertFromSOAP
	genSOAPClientInterface
	getReturnNode
	getSOAPType
	isHTTPError
	parseSOAP
	processWSDL
	server
	SOAPClientInterface-class
	SOAPFault
	SOAPHandlers
	SOAPNameSpaces
	SOAPResult
	SOAPResult-class
	SOAPServer
	SOAPServer-class
	SOAPServerDescription
	SOAPServerDescription-class
	SOAPType-class
	SOAPTypes
	toSOAP
	writeInterface
	writeSOAPBody
	writeTypes
	WSDLMethod-class
	WSDLParseHandlers
	Index

