Accessing the GeolP library from R
with Rffi and RGCCTranslationUnit

Duncan Temple Lang, University of California at Davis

Table of Contents

THhE GEOIP TIDrary ..ot e e e e e s s e e s nnnr e e e e e 1
Manually Interfacing to the C library With REfiooiiiii e 2
Cleaning up the CIF INTEITACESviiiiiiiie e 6
Automating the INterface GENEIaiONeeiiiiiiiie e e e es 6
ENUMETBIIONS ...eeeiiieeie ettt e et e e e bt e e e e ek e e e e e b e e e e e e e e e e e e e e nnnee s 9
Processing al routines and data SITUCTUIESccoiiiiiiiiiiiiiee ettt e e 11
.. 12

DEta SITUCIUIES ...t e e e e e e e e e e s e e e e e e e e s s e nr e e e e e e e e s e s nnnrnneeeeeenas 13

The GeolP library

The GeolP library from MaxMind is an Open Source library that maps Internet Protocol addresses to esti-
mated |atitude and longitude, city and county values. (MaxMind also provides a more accurate commercial
version of the database.) This ability to take an | P address and get itslocation isuseful in many dataanalysis
applications. One example is doing intrusion detection on network traffic packets. Another is drawing a
map of visitorsto a Web site by analyzing web logs.

Before we can use the Geol P C library, we need to both understand the basic programming model/interface
and then we need to build the bindingsfrom R to the C code. We will usethe RGCCTranslationUnit package
to programmatically obtain a description of the C-level API. We will use Rffi to invoke the routines. So
al that remains before getting started is to get an understanding of the programming model. We can pass
an IP address either as a number, a "dotted-quad” or by host name such as "cran.r-project.org”. For each
operation in the C library, there are 3 routines corresponding to these different input types. The names of
the routines end in _ipnum, _addr and _name, respectively. We can use IP V6 or regular IP V4 address-
es and the IPV6 routines have a _v6 suffix (following the _ipnum, addr or _name). So to get the name
of an IP address's country, we can use GeolP_country _code by ipnum, Geol P_country code by addr or
GeolP_country_code by name

Each routine takes a pointer to the Geol P "database”" or agent and then the | P addressin the appropriate form.
To be ableto use any of these routines, we must first create a Geol P instance and obtain areferencetoit. We
do thiswith Geol P_new. When we are finished with this, we can use Geol P_del ete to clean up the memory
associated with it. There are other routines that give us more flexibility, but these are all we need for now.

The following is pseudo, heuristic, informa sample C code that we might use to interact with the library
asif wewerewriting interactively without declarations.

db = Geol P_new(GEO P_STANDARD)
r = Geol P_record_by_ addr (db, "169.237.46.32")
r->latitude

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/Rffi
http://www.maxmind.com/app/geolitecity
http://www.maxmind.com
http://www.maxmind.com
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/Rffi

Accessing the Geol P library from R with Rffi and RGCCTranslationUnit

r->l ongi t ude

r = Geol P_record_by nane(db, "www. onegahat.org")

r->city

r->postal _code

r->country_code

The Geol P_record_by addr routine returns a pointer to a C struct with 12 different fields identifying the
location of the IP address.

Manually Interfacing to the C library with
Rffi

Welll start by manually creating the FFI-based interface to the routines in the pseudo C code above. First,
we need to define a call interface (CIF) for GeolP_new. This takes an integer and returns a pointer to a
Geol P object. We can treat that as an opague data type and we don't need to know about its contents. We
just passit to the other routines we will invoke. So we can define the CIF as

library(Rffi)

CGeol P_new cif = Cl F(pointerType, |ist(sint32Type))

Next we need to know the appropriate value to pass as the integer argument. By reading the documentation
or examples, we see that it is a combination of one or more options from the Geol POptions enumeration.
WEe'l just usethe GEOPI_STANDARD valuewhichis0. We'll talk later about how we can use the symbolic
names for these enumerations to make the code clearer and more robust. So now we are ready to call the
routine. The first thing to do is load the Geol P library. The details will differ on your machine but on a
Mac OS X box, we can use

dyn.l oad("/usr/local/lib/libGeolP.dylib")
(Wecan use

. Platforntdylib. ext

to find the appropriate extension. /usr/local/lib is areasonable place to expect the library to be located, but
it is not guaranteed.)

So now we have loaded the routines, we can invoke Geol P_new with

db = call C F(CGeol P_new cif, "Geol P_new', OL)

isasimple externa pointer object in R. Thisisvery "raw" as it stands and we probably want to create
a class to represent that this is a Geol P pointer object and create a function to hide the details of calling
Geol P_new. But we'll come back to this niceties later.

Next we want to invoke GeolP_record by addr. So again we need create a CIF for this signature. This
takes a pointer (to a Geol P object) and a string giving the dotted-quad | P address. The routine returns a
pointer to a Geol PRecord structure. Thisis defined in the Geol PCity.h header file as

t ypedef struct Geol PRecordTag {
char *country_code;

char *country_codes3;

char *country_nane;

char *region;

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/Rffi

Accessing the Geol P library from R with Rffi and RGCCTranslationUnit

char *city;
char *postal _code;
float latitude;
float |ongitude;
uni on {
int metro _code; /* metro _code is a alias for dnma_code */
i nt dme_code;
1
int area_code;
i nt charset;
char *continent code;
} Ceol PRecord

We don't have to deal with this stuct quite yet. Instead, we need only define the CIF as returning a pointer.

So our CIF iscreated as

Geol P record_by addr_cif = ClF(pointerType, list(db = pointerType, addr = stringTy
The name of the R variable used to store the CIF isirrelevant, of course. | am using the name of the routine

with a_cif suffix for clarity so we know what the value is for. But of course, this same CIF could be used
with any routine with the same signature.

Now we can call the routine

r = call Cl F(Geol P_record by addr _cif, "GeolP_record by addr", db, "169.237.46.32")
With this, we find we get an error from Geol P

I nval i d dat abase type Geol P Country Edition, expected GeolP City Edition, Rev 1
This is because | am using the city-level API on the country database. | need to install the city database.

Well take a slight detour and show how to make a call to find the country of an IP address and then return

to dealing with the city database.

Inthe Geol P.h header file, thereisaroutine Geol P_country_code by addr. Thishasavery similar signature
as Geol P_record_by addr but returns the name of the country in which the IP address is located. So we
can create a new CIF and invoke this routine:

cif = CIF(stringType, list(db = pointerType, addr = stringType))
country = call ClF(cif, "GeolP_country code_by addr", db, "169.237.46.32")
If welook at the R object count ry, we seeitisalist with two elements named "value" and "inputs".

count ry$val ue

is the return value and gives us the name of the country - "US'. The second element - "inputs" - isthe db
argument to the routine. Since that is a pointer, the routine may have modified its contents. Socal | Cl F()
returns that. We know that any updates will be see in the R variable db and also we think that it is actually
not modified in the routine. So when creating the CIF, we can say that thisis not mutable. Alternatively, in
thecall tocal | Cl F(), we can tell it not to return the inputs. So

country = call CF(cif, "GeolP _country code by addr", db, "169.237.46.32", returnln
returns just the country name as a string. And

cif = CIF(stringType, list(db = pointerType, addr = stringType), nutable = c(FALSE
country = call G F(cif, "GeolP_country_code_by_addr", db, "169.237.46.32")

also returnsjust the string. Setting the mutability of the parametersin the CIF isa stronger statement asthis
appliesto al routines we call with the same CIF.

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit

Accessing the Geol P library from R with Rffi and RGCCTranslationUnit

Now let's return to the issue of the city database. Y ou can download this from http://www.maxmind.com/
app/geolitecity. Follow the download and installation instructions there. We need to tell our Geol P "server”
which databaseto use. Geol P_newisalittle too simple aswe cannot control the choice of database. L ooking
in the Geol P.h header file, we see three potentially promising routines:

GEA P_API int Geol P_db_avail (int type);
GEA P_API Geol P* CGeol P_open_type (int type, int flags);
GEA P_API Geol P* Geol P_open(const char * filename, int flags);

If type identifies which database to open, we can check whether the database is available and use that
with Geol P_open_type. If we have the database file in a non-standard location, we can use Geol P_open
to provide the full file name.

The type should be one of the GeolPDBTypes enumerated values and we can try
GEOIP_CITY_EDITION_REV1 (with avalue of 2) asthe possible option. So let's create a CIF for calling
GeolP_db_avail and call that:

cal |lCIF(Cl F(sint32Type, list(sint32Type)), "GeolP_db_avail", 2L)

Thisreturns O, i.e. not available for me. We can try the different options, but Geol P seems to only see the
country database. So let'stry to load the file by name.

We need to create a CIF for Geol P_open and invokeit:

cif = ClF(pointerType, list(stringType, sint32Type))

db_city = callCF(cif, "GeolP_open", "/usr/local/share/ Geol P/ GeoLiteCity.dat", OL)
This successfully returns a pointer. So now we can return to obtaining a record:

r = call Cl F(Geol P_record by addr _cif, "GeolP_record by addr", db _city, "169.237.46
And this also returns successfully. We probably don't want the mutable inputs so we can change our call

r = call Cl F(CGeol P_record by addr cif, "GeolP_record by addr", db _city, "169.237. 46

Now we have the record which is a pointer to the 12-element struct displayed above. Since we want to
accessfieldsin that struct, we need to create a description of the types of elementsin the struct. We can do
this programmatically, but for now we will do it manually.

We need to create a new type similar to sint32Type, stringType, etc. but for describing this particular
Geol PRecord structure. We use the function st r uct Type() to do this. We pass it an ordered list of the
types of the fields in the struct. So for this struct, we would use R code something like

CGeol PRecord_type =
struct Type(list(stringType, # country_code

stringType, # country_code3
stringType, # country_nane
stringType, # region
stringType, # city

stringType, # postal _code

fl oat Type, # latitude

fl oat Type, # |ongitude

si nt 32Type, # the union el ement
si nt 32Type, # area_code

si nt 32Type, # charset

stringType # continent_code

))

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.maxmind.com/app/geolitecity
http://www.maxmind.com/app/geolitecity

Accessing the Geol P library from R with Rffi and RGCCTranslationUnit

Now that we have this description, we can use it to have Rffi retrieve individual fields from the pointer to
the struct or copy al of the fieldsto an R list. The two functions to do thisare get St r uct Fi el d() and
get St ruct Val ue(). Wewill accessthe latitude and longitude fields. Unfortunately, we didn't put names
on the elements of the struct description so R doesn't know how to match latitude to the 7th element. So
we can use the index of the element using

getStructField(r, 7, Ceol PRecord_type)
and we get our value. Similarly, we can get the city name with

getStructField(r, 5, GeolPRecord_type)
Using indicesis not agood idea. So we should put names on the elements in the list we passto st r uct -
Type():
Ceol PRecord_type =
struct Type(list(country code = stringType,
country _code3 = stringType,
country_name = stringType,
regi on = stringType,
city = stringType,
postal _code = stringType,
| atitude = fl oat Type,
| ongi tude = fl oat Type,
"?" = sint32Type, # the union el enment
area_code = sint32Type,
charset = sint32Type,
conti nent_code = stringType

))

Now we can use a name to access the field:

getStructField(r, "latitude", Geol PRecord type)
getStructField(r, "city", Geol PRecord_type)

We can even get multiple valuesin asingle call:
getStructField(r, c("latitude", "city", "region"), Geol PRecord type)

There are lots of other things we can look at in the API that are more complex, e.g. GeolP_next_record,
Geol PRegion struct and fixed length arrays, the union, etc., but we will return to those later. For now we
have the information we want from Geol P and we are working with simple/built-in data types and asingle
struct. If wewanted to accessthe fields in the Geol P object, we would describe its structure in the same way
as for the Geol PRecord. Thiswould give us access to the name of the file, when it was last updated, etc.

Wewill take abrief ook at how we can access global variables. libGeol P has several global variableswhich
arestringsor arrays of stringsor pointersto strings. For example, Geol PDBFileNameisapointer to astring,
Geol PDBFileName is a string and GeolP_country _code is an array of 253 strings of length 3. Once we
describe the type of the variabe, we can use get Nat i veVal ue() to retrieve the value of the object. This
will convert the C value to an R abject using the same conversion mechanism as used in converting the
return valueviacal | Cl F().

So let's find the value of Geol PDBFileName:
get Nati veVal ue(" Geol PDBFi | eNane", stringType)

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/Rffi

Accessing the Geol P library from R with Rffi and RGCCTranslationUnit

E Note
Come back to this and accessing arraysin R by indexing, etc.

Cleaning up the CIF interfaces

Before we turn our attention to how we might automate alot of the work we did above, we will think about
how we might like to have the R interface to these routines and data structures. Firstly, we want to hide
the create of the CIFs and the callsto cal | Cl F() and provide R functions that are direct proxies for the
C routines with all these details inside the R functions. Secondly, we would like to define classes for the
pointers that are returned so we can identify the type of object to which they point. We also would like to
have $() and [[() operators for accessing fieldsin astruct rather than having to cal get St r uct Fi el d().
Additionally, if we are making repeated calls to the same routine, we don't want to incur the penalty of
having to find the address of the routine in each call. So our functions should cache that on the first call or
when they are defined. We can do this with closures or aglobal variable.

Automating the Interface Generation

i nvi si bl e(sapply(c("const.R', "createRFunc.R', "defd asses.R', "tuTORType. R',

We now turn our attention to how we can programmatically obtain descriptions of C routines and data
structures and then use these to create CIFs and struct types so that we don't have to manually build the
interface between R and C code. We use the RGCCTranslationUnit package to read the C code. (We could
use RCIndex, but that is still awork in progress.) We first create a simple C file that merely includes the
Geol P.h and Geol PCity header file.

#i ncl ude <Ceol P. h>
#i ncl ude <CGeol PCity. h>

Then we generate the TU output from gcc with

gcc -fdunp-transl ation-unit -o /dev/null -c Rgeoip.c

Now we can read this translation unit into R:

i brary(RGCCTransl ati onUnit)

tu = parseTU("~/ Projects/org/onegahat/ R Geol P/i nst/doc/ Rgeoi p.c. 001t.tu")
We are interested in the routines, so let's find all of them and then get the subset for the Geol P interface:

funcs
funcs

get Rout i nes(tu)
funcs[grep(""Geol P', nanes(funcs), value = TRUE)]

We will also be interested in the different enumerations used in the code, so let's find those al so.

enuns = get Enunerati ons(tu)
nanes(enuns)

From thework we did manually, we areinterested in the routines Geol P_open and Geol P_record by addr.
Because we want to access the fields in the struct returned by GeolP_record_by_addr, we will be interest-
ed in the Geol PRecord structure. We'll come by that passively when finding out about the signature for
GeolP_record by _addr.

"tuT

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/RGCCTranslationUnit

Accessing the Geol P library from R with Rffi and RGCCTranslationUnit

Let's start with Geol P_open. We have the nodein the trandlation unit graph that correspondsto thisroutine's
declaration. We now want to pull together all the information about the pieces of this routine and we use
r esol veType() for this. We passit the node and the trand ation unit so it can follow all the relevant links:

i p. open = resol veType(funcs[["Geol P_open"]], tu)
i p. open
Note that the names of the parameters aren't available in the TU from GCC and we use simple numbers!

We can see the types of the parameters printed on the consol e, but now we want to programmeatically access
them and map to the corresponding FFI types. We can loop over the parameters, fetch the type of each
and pass thisto gcc TUTypeToFFI (). As the name suggests, the function maps a GCC-TU type to the
corresponding FFI type. So our code to get the inputs for creating the CIF for the routineis

par nTypes = | appl y(i p. open$paraneters, function(x) gccTUTypeToFFI (x$type))
rt = gccTUTypeToFFI (i p. open$ret urnType)

Now we can create the CIF;

i p.open.cif = ClF(rt, parnflTypes)
We may want to add information about whether the parameters are mutable or not by looking for const
declarations.

Next we will create an R function named Geol P_open and have it accept 2 parameters and call the corre-
sponding C routine. Our function can be built from the description of the routine i p. open. The function
needsto know the name of the R variable containing therelevant CIF, i.e. oip.open.cif, or alternatively create
the CIF itself, either once or each timethefunctioniscalled. Thefunctionthen merely invokescal | Cl F(),
passing the 2 arguments it receives. So the function would be

Geol P_open = function(x1l, x2, ..., .cif = ip.open.cif) {
calICIF(.cif, ip.open.cif, "GeolP_open", x1, x2, ...)
}

(Thefact that the parameter names are lost in the transglation unit is a pity. We are working on an approach
wherethey arenot.) Note that we have allowed the caller to specify adifferent CIF should shewant. We have
aso provided a... argument to allow argumentsto be passed ontocal | Cl F(),i.e.r et ur nl nput s and
any otherswe add. Instead of referring to avariable that containsthe CIF, we could provide an expression to
create the CIF asthe default value for . ci f . To do this, we would get not the CIF types for the parameters
and return type, but rather then names of these variables and create the call to Cl F() with the elements
explicitly articulated, i.e.

CGeol P_open = function(x1, x2, ...,
.cif = .cif = CIF(pointerType, list(stringType, sint32Type)

Our function should also convert the result to an explicit reference to a Geol P object. We should define a
class, say Geol P_r ef , which is a sub-class of RCRef er ence, and turn the pointer into an instance of
this class. We should define methods for the $ and [[operators for this reference class to access individual

fieldsusing get St r uct Fi el d(). Since a GeolP object is a struct in C, we should also define aclassin
R that mirrorsthat struct and has the same slots. We should also provide a coercion method to transfer aC
reference to a Geol P object to the R type by calling get St r uct Val ue(). So mapping this routine to an
R function involves alot of peripheral functionsthat are done just once for each "complex" data structure.

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit

Accessing the Geol P library from R with Rffi and RGCCTranslationUnit

We want to write a function that will take a GCC-TU description of aroutine and create the R code to call
that routine, i.e. the routine above.

Of course, in creating our CIF and function and methods, we have had to do some programming using the
tranglation unit code. The amount of effort is at least as much as when we did it manually by reading the
header file ourselves, although we have a much cleaner and more comprehensive interface. The important
thing to recognize, however, is that we can automate this. While we did go through al the steps in detail,
these can be put into a function to create the CIF for an arbitrary routine. And since we have information
for al the routines, we can generate ClFs for the entire Geol P library, or any C library for that matter.

The RGCCTranslationUnit package providesthe functionsto create the R code described abovefor arbitrary
routines and structure definitions. We can use them as follows to create an interface to Geol P_open and
GeolP_record_by_addr:

i p. open = resol veType(funcs[["Geol P_open"]], tu)

defi ne(createRFunc(i p. open))

defi ne(def Struct d ass(i p. open$returnType@ype))

record = resol veType(funcs[["CGeol P_record_by_addr"]], tu)
defi ne(creat eRFunc(record))

def i ne(def Struct d ass(record$returnType@ype))

We can find out what classses and functions were defined with

get Cl asses(gl obal env())
| s(pattern = "~Geol P")

We used closures, so al of the CIF and struct type definitions were made locally within the

The next thing we might want to do is write the generated code to afile so that we can use it in other R
sessions. Instead of calling def i ne(), we can store the generated code and then use cat () to writeit to
afile. So we generate it as follows:

code= |ist(createRFunc(ip.open),
def Struct d ass(i p. open$returnType@ype) ,
cr eat eRFunc(record),
def Struct d ass(record$returnType@ype))

Then we can write it with

cat("library(Rffi)",
"dyn.load('/usr/local/lib/libGeolP.dylib")",
unlist(code), sep = "\n", file = "geol P.R")

Now that everything is defined, we can load the DSO and call the functions

dyn.l oad("/usr/local/lib/libGeolP.dylib")

db = Geol P_open("/usr/|ocal/share/ Geol P/ GeoLiteCity.dat", OL, FALSE)
cl ass(db)

r = Geol P_record_by_addr (db, "169.237.46.32", FALSE)

class(r)

nanes(r)

r$city

r $area_code

r$l atitude

r $l ongi t ude

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/RGCCTranslationUnit

Accessing the Geol P library from R with Rffi and RGCCTranslationUnit

The following code takes 1000 I P addresses from aweb log and gets the city for each:

| oad("i pl000. rda")
o = sapply(ip, function(i) Ceol P_record_by addr(db, i, returnlnputs = FALSE) $city)

Enumerations

We have looked at working with routines and different data structures. We now return to enumer-
ations and symbolic constants. We saw the GeolPOptions data type which are values we pass to
Geol P_open or Geol P_new. The possible values are GEOIP_STANDARD, GEOIP_ MEMORY _CACHE,
GEOIP_CHECK_CACHE, GEOIP_INDEX_CACHE and GEOIP_MMAP_CACHE. These |labdls corre-
spond to the values 0, 1, 2, 4, and 8, respectively, but of course the names are far more suggestive of the
meaning. As aresult, we want to use the symbolic namesin R. So we can define R variables with the same
names and values:

GEQ P_STANDARD = OL

GEO P_MEMORY_CACHE = 1L

GEQ P_CHECK_CACHE = 2L

GEO P_| NDEX_CACHE = 4L

GEA P_MVAP_CACHE = 8L

Note that we have explicitly made these integers.

There are three aspects of this we want to consider. The first is somewhat cosmetic and a matter of conve-
nience. All of these values start with the string "GEOIP_". It would be more convenient to optionally refer
to the values without this common prefix, e.g. STANDARD, MEMORY _CACHE, etc. Secondly, while
the Geol P API declares the flag parameter type as int, we should use explicit enumeration types when this
iswhat is expected. This helps to catch errors in the code and is also clearer. If aroutine is declared with
an enumeration parameter, we must be able to validate the value as being from the set of possible values.
We can achieve this by defining a class for the enumeration type in R and defining coercion methods from
integers or namesto the actual value. Furthermore, we can use the symbolic names on the integer values to
make the values more intelligible for humansto read. Thethird issueisthat not al enumerations are smple
mutually exclusive options. Some enumerations are intended to be combined together as bitwise-AND val-
ues and then compared to the individual possible values via bitwise OR operations. Thisis typically done
using powers of 2 for the values to set individual bits. This might be done with an enumeration in which
the values for the individual elements are explicitly specified, e.g.

enum {

CURLPROTO HTTP = 1,
CURLPROTO _HTTPS = 2,
CURLPROTO FTP = 4,
CURLPROTO _FTPS = 8,

L

or with a collection of pre-processor #define directives, e.g.,

#defi ne CURLPROTO HTTP (1<<0)
#defi ne CURLPROTO HTTPS (1<<1)
#def i ne CURLPROTO _FTP (1<<2)
#defi ne CURLPROTO FTPS (1<<3)

. These come from libcurl and relate to the different protocols.

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit

Accessing the Geol P library from R with Rffi and RGCCTranslationUnit

A critical different between these and enumerations is that we combine two of these values via an OR
operation and we obtain a new and permissible value. For example, we can query whether the protocol to
be used includesHTTP or HTTPS with

prot ocol & (CURLPROTO HTTP | CURLPROTO_HTTPS)

Thisisvery different from an enumeration. We also want the object to identify its original components, so
we add combine the names of the individual elements as the name of the integer value. So to allow both
HTTP and HTTPS, we might use

CURLPROTO HTTP | CURLPROTO HTTPS
and we want the result to appear in R as

CURLPROTO_HTTP, CURLPROTO_HTTPS
3

To addressthese issues, we definetwo basic classes- Enunmval ue and Bi t wi seVal ue. Thefirstisused
as the root or base class for any new enumeration type we want to define. Thisis used for sets of simple
symbolic constants represented as enumerations. Bi t wi seVal ue isused for values that we can combine
together into a single value as in the curl protocol example above. To represent the different values of the
Geol PDBTypes enumeration, we would use Enumval ue to defineaGeol PDBTypes classin R:

set d ass(' Geol PDBTypes', contains = 'EnunVal ue')
We create R variables for each of the values using the corresponding namein C code, e.g.,

"GEQ P_COUNTRY_EDI TI ON' <- Generi cEnunval ue(' GEO P_COUNTRY_EDI TION', 1, ' Geol PDBTY
"GEA P_REG ON_EDI TI ON_REVO" <- GCeneri cEnunval ue(' GEO P_REA ON_EDI TION_REVO', 7, 'C

We would then define a global variable that represents the entire enumeration definition, containing the
names of the elements and their values. Thisis used when performing conversions from numeric and string
values and validating values. And we finish the R code to handle such an enumeration by defining coercion
methods for converting values specified by integer or numeric or by the symbolic name as a string. These
allow usto have calls of the form

as("GEOQ P_ORG EDI TI ON', "Geol PDBTypes")
as(5, "GCeol PDBTypes")

For a bitwise enumeration, we define the same variables. We inherit the | () method for combining two
values of thistype, e.g.,

GEQ P_CHECK_CACHE | GEO P_MEMORY_CACHE
which yields

GEQ P_CHECK_CACHE | GEO P_MEMORY_CACHE
CGeol POpt i ons 3

showing the value resulting from combining of the two elements, along with the name of the composition
and the class of the object.

Using the RGCCTranslationUnit package, we can resolve the enumeration definition nodes we find in the
data structures. The package attempts to determine which enumerations are really bitwise enumerations.
In the case of Geol POptions, it recognizes that all values are a power of 2 and so determines that it is a
bitwise enumeration and the resolved object is of class Bi t wi seEnuner at i onDefi niti on. Forthe
Geol PDBTypes, the values do not suggest a bitwise enumeration and so we get an object of class Enu-

nmer at i onDef i ni t on. The code that doesthisis

tu = parseTU("~/ Proj ects/org/onegahat/ R Geol P/i nst/doc/ Rgeoi p.c. 001t.tu")

10

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/RGCCTranslationUnit

Accessing the Geol P library from R with Rffi and RGCCTranslationUnit

enuns = get Enunerati ons(tu)

TUOpt i ons(checkBi t wi seAt Resol ve = TRUE)

i p.opts = resol veType(enuns$Ceol POpti ons, tu)

i p.db.types = resol veType(enuns$Geol PDBTypes, tu)

We can now turn these descriptions into R code with genCode()

Processing all routines and data struc-
tures

library(Rffi); Iibrary(RGCCTransl ationUnit)

RGCCTr ansl ati onUni t::: TUOpti ons(checkBitw seAt Resol ve = TRUE)

tu = parseTU("~/ Proj ects/org/onegahat/ R Geol P/i nst/doc/ Rgeoi p.c. 001t.tu")
funcs = get Routines(tu)

funcs = funcs[grepl ("*Geol P', nanes(funcs))]

sappl y(paste("../../R'", c("createRFunc.R', "tuToRType.R', "tuToFFI.R"', "genCode.F

funcs. code = |l appl y(funcs, function(x) createRFunc(resolveType(x, tu)))
ds = getDataStructures(tu)
ds = ds[grepl (""Geol P', nanes(ds))]

rds = | appl y(ds, resolveType, tu)
ds. code = | appl y(rds, genCode)

If we want to source the code into an existing session, we can use

I'i brary(RGCCTUFFI)
code = genTU nterface("inst/doc/ Rgeoi p.c.001t.tu", pattern = "~Geol P")

If we want the code so that we can put it in a package, we haveto be

code = genTU nterface("inst/doc/Rgeoi p.c.001lt.tu", pattern
useC osure = TRUE,
used obal C F = TRUE,
used obal FFI Type TRUE,
put G obal sl nLoad TRUE)

"ACGeol P,

cat("library(Rffi)",
"library(RAut oGenRunTi ne) ",
".onLoad = function(...) dyn.load('/usr/local/lib/libGeolP.dylib")",
unlist(code), sep = "\n\n",
file = "R RGeol P. R")

db = Geol P_open("/usr/local/share/ Geol P/ GeoLiteCity.dat", GEQ P_STANDARD, FALSE)
r = Geol P_record_by nanme(db, "ww. onmegahat.org", FALSE)

r]

ric("latitude”, "longitude")]

r$l at

JINEUS)

r = Geol P_record_by_addr (db, "169.237.46.32", FALSE)
r]

11

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit

Accessing the Geol P library from R with Rffi and RGCCTranslationUnit

ric("latitude”, "longitude")]

I'l = readLines(gzfile("~/omegahat.|og.gz"), n = 7000)

addr = gsub(" ([~]1+) .*", "\\1", II)

dup = dupli cat ed(add)

i p = addr[!dup]

#ip = uni que()

library(Rffi) # for isN | Pointer()

pos = sapply(ip, function(h) {
r = Geol P_record_by_addr(db, h, returnlnputs = FALSE)
if(isNi|Pointer(r))

c(NA, NA)
el se
r{c("longitude", "latitude")]

1)

If we process al of the lines in omegahat.log.gz, we end up with 265782 unique | P addresses. If we time
the sapply() loop below to get the locations, this takes

user system el apsed
1262.574 17.274 1425.822

to process them al or 0.005 seconds per |P address. There are 21 that cannot be matched.

i = which(is.na(pos[1,]))

ipli]

We canusethe Rf f i package to create the CIF object describing this type of routine and then invokeit.

library(Rffi)
CGeol P_new = Cl F(poi nterType, |ist(sint32Type))

i p.opts = resol veType(enuns$Geol POpti ons, tu)
Let's skip over the details of the bitwise enumeration for the present and well use the vaue of
GEOIP_STANDARD:

GEO P_STANDARD = i p. opt s@al ues[" GEO P_STANDARD']

dyn.l oad("/usr/local/lib/libGeolP.dylib")

So now we can call GeolP_new

i pDB = cal | Cl F(Geol P_new, "Geol P_new', CGEQ P_STANDARD)

We probably want to define a class "Geol P' and identify this pointer as an instance of this class

set O ass(" RCRef erence”, representation(ref = "external ptr"))
set C ass(" Geol P', contains = "RCReference")

i pDB = new "Geol P*, ref = ipDB)

Let'sinterface to the Geol P_database info and Geol P_database edition routines to check things are okay.

Ceol P_dat abase_info = ClF(stringType, list(pointerType), FALSE)
Ceol P_dat abase_edition = Cl F(ui nt32Type, |i st (pointerType), FALSE)

cal | Cl F(Geol P_dat abase_i nfo, "CGeol P_dat abase_info", ipDB@ ef)
cal | Cl F(Geol P_dat abase_edi ti on, "Geol P_database_edition", ipDB@ ef)

12

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://cran.r-project.org/web/packages/Rffi/index.html

Accessing the Geol P library from R with Rffi and RGCCTranslationUnit

Now let's see about calling GeolP_id_by addr or GeolP_id_by name. These have the same signature so
we can use the same CIF.

int.GeolP_String = ClF(sint32Type, list(pointerType, stringType), c(FALSE, FALSE))
Then we can call thiswith
cal |CIF(int.GeolP_String, "GeolP_id _by addr", ipDB@ef, "74.125.45.100")

Now let's ook at the routine Geol P_country_name_by_addr. This takes a Geol P pointer and a string and

returns a string. So we define the CIF as

Geol PString = ClF(stringType, list(pointerType, stringType))

Now we can use this to call the routine

call Cl F(Geol PString, "Geol P_country nanme_by_addr", ipDB@ef, "74.125.45.100") $val u

Data Structures

Let'slook at GeolP_region by addr. This returns a pointer to a Geol PRegion object. Thisis a struct con-

taining two elements, both strings of afixed length 3, i.e. char [3]. We can create the CIF as

Geol PRegi on. Geol P_string = Cl F(pointerType, |ist(pointerType, stringType))

Thiswill alow usto call the routine and get the pointer to the Geol PRegion.

ans = cal | Cl F(Geol PRegi on. Geol P_string, "Geol P _region_by addr", ipDB@ef, "74.125.
Now we have to be able to identify the fields in the pointer to the structure. We can manually examine the

fields or we can use RGCCTrandlationUnit to identify them.

ds = getDataStructures(tu)

geoDS = ds[grep(""CGeol P", nanes(ds), value = TRUE)]

reg = resol veType(resol veType(geoDS[[" Geol PRegi on"]], tu))
We can extract the fields and their types. The names are obtained via

nanes(reg@i el ds)
The type of thefirst element is

reg@ields[[1]] @ype
and thisisan ArrayType. It contains the length and element type of the array.

13

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit

	Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit
	Table of Contents
	The GeoIP library
	Manually Interfacing to the C library with Rffi
	Cleaning up the CIF interfaces
	Automating the Interface Generation
	Enumerations
	Processing all routines and data structures
	
	Data Structures

