
1

Accessing the GeoIP library from R
with Rffi and RGCCTranslationUnit

Duncan Temple Lang, University of California at Davis

Table of Contents
The GeoIP library .. 1
Manually Interfacing to the C library with Rffi .. 2
Cleaning up the CIF interfaces .. 6
Automating the Interface Generation ... 6
Enumerations ... 9
Processing all routines and data structures ... 11
.. 12
Data Structures ... 13

The GeoIP library
The GeoIP library from MaxMind is an Open Source library that maps Internet Protocol addresses to esti-
mated latitude and longitude, city and county values. (MaxMind also provides a more accurate commercial
version of the database.) This ability to take an IP address and get its location is useful in many data analysis
applications. One example is doing intrusion detection on network traffic packets. Another is drawing a
map of visitors to a Web site by analyzing web logs.

Before we can use the GeoIP C library, we need to both understand the basic programming model/interface
and then we need to build the bindings from R to the C code. We will use the RGCCTranslationUnit package
to programmatically obtain a description of the C-level API. We will use Rffi to invoke the routines. So
all that remains before getting started is to get an understanding of the programming model. We can pass
an IP address either as a number, a "dotted-quad" or by host name such as "cran.r-project.org". For each
operation in the C library, there are 3 routines corresponding to these different input types. The names of
the routines end in _ipnum, _addr and _name, respectively. We can use IP V6 or regular IP V4 address-
es and the IPV6 routines have a _v6 suffix (following the _ipnum, _addr or _name). So to get the name
of an IP address's country, we can use GeoIP_country_code_by_ipnum, GeoIP_country_code_by_addr or
GeoIP_country_code_by_name

Each routine takes a pointer to the GeoIP "database" or agent and then the IP address in the appropriate form.
To be able to use any of these routines, we must first create a GeoIP instance and obtain a reference to it. We
do this with GeoIP_new. When we are finished with this, we can use GeoIP_delete to clean up the memory
associated with it. There are other routines that give us more flexibility, but these are all we need for now.

The following is pseudo, heuristic, informal sample C code that we might use to interact with the library
as if we were writing interactively without declarations.

db = GeoIP_new(GEOIP_STANDARD)
r = GeoIP_record_by_addr(db, "169.237.46.32")
r->latitude

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/Rffi
http://www.maxmind.com/app/geolitecity
http://www.maxmind.com
http://www.maxmind.com
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/Rffi

Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit

2

r->longitude
r = GeoIP_record_by_name(db, "www.omegahat.org")
r->city
r->postal_code
r->country_code

The GeoIP_record_by_addr routine returns a pointer to a C struct with 12 different fields identifying the
location of the IP address.

Manually Interfacing to the C library with
Rffi
We'll start by manually creating the FFI-based interface to the routines in the pseudo C code above. First,
we need to define a call interface (CIF) for GeoIP_new. This takes an integer and returns a pointer to a
GeoIP object. We can treat that as an opaque data type and we don't need to know about its contents. We
just pass it to the other routines we will invoke. So we can define the CIF as

library(Rffi)
GeoIP_new_cif = CIF(pointerType, list(sint32Type))

Next we need to know the appropriate value to pass as the integer argument. By reading the documentation
or examples, we see that it is a combination of one or more options from the GeoIPOptions enumeration.
We'll just use the GEOPI_STANDARD value which is 0. We'll talk later about how we can use the symbolic
names for these enumerations to make the code clearer and more robust. So now we are ready to call the
routine. The first thing to do is load the GeoIP library. The details will differ on your machine but on a
Mac OS X box, we can use

dyn.load("/usr/local/lib/libGeoIP.dylib")

(We can use

.Platform$dylib.ext

to find the appropriate extension. /usr/local/lib is a reasonable place to expect the library to be located, but
it is not guaranteed.)

So now we have loaded the routines, we can invoke GeoIP_new with

db = callCIF(GeoIP_new_cif, "GeoIP_new", 0L)

db is a simple external pointer object in R. This is very "raw" as it stands and we probably want to create
a class to represent that this is a GeoIP pointer object and create a function to hide the details of calling
GeoIP_new. But we'll come back to this niceties later.

Next we want to invoke GeoIP_record_by_addr. So again we need create a CIF for this signature. This
takes a pointer (to a GeoIP object) and a string giving the dotted-quad IP address. The routine returns a
pointer to a GeoIPRecord structure. This is defined in the GeoIPCity.h header file as

typedef struct GeoIPRecordTag {
 char *country_code;
 char *country_code3;
 char *country_name;
 char *region;

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/Rffi

Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit

3

 char *city;
 char *postal_code;
 float latitude;
 float longitude;
 union {
 int metro_code; /* metro_code is a alias for dma_code */
 int dma_code;
 };
 int area_code;
 int charset;
 char *continent_code;
} GeoIPRecord;

We don't have to deal with this stuct quite yet. Instead, we need only define the CIF as returning a pointer.
So our CIF is created as

GeoIP_record_by_addr_cif = CIF(pointerType, list(db = pointerType, addr = stringType))

The name of the R variable used to store the CIF is irrelevant, of course. I am using the name of the routine
with a _cif suffix for clarity so we know what the value is for. But of course, this same CIF could be used
with any routine with the same signature.

Now we can call the routine

r = callCIF(GeoIP_record_by_addr_cif, "GeoIP_record_by_addr", db, "169.237.46.32")

With this, we find we get an error from GeoIP

Invalid database type GeoIP Country Edition, expected GeoIP City Edition, Rev 1

This is because I am using the city-level API on the country database. I need to install the city database.
We'll take a slight detour and show how to make a call to find the country of an IP address and then return
to dealing with the city database.

In the GeoIP.h header file, there is a routine GeoIP_country_code_by_addr. This has a very similar signature
as GeoIP_record_by_addr but returns the name of the country in which the IP address is located. So we
can create a new CIF and invoke this routine:

cif = CIF(stringType, list(db = pointerType, addr = stringType))
country = callCIF(cif, "GeoIP_country_code_by_addr", db, "169.237.46.32")

If we look at the R object country, we see it is a list with two elements named "value" and "inputs".

country$value

is the return value and gives us the name of the country - "US". The second element - "inputs" - is the db
argument to the routine. Since that is a pointer, the routine may have modified its contents. So callCIF()
returns that. We know that any updates will be see in the R variable db and also we think that it is actually
not modified in the routine. So when creating the CIF, we can say that this is not mutable. Alternatively, in
the call to callCIF(), we can tell it not to return the inputs. So

country = callCIF(cif, "GeoIP_country_code_by_addr", db, "169.237.46.32", returnInputs = FALSE)

returns just the country name as a string. And

cif = CIF(stringType, list(db = pointerType, addr = stringType), mutable = c(FALSE, FALSE))
country = callCIF(cif, "GeoIP_country_code_by_addr", db, "169.237.46.32")

also returns just the string. Setting the mutability of the parameters in the CIF is a stronger statement as this
applies to all routines we call with the same CIF.

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit

Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit

4

Now let's return to the issue of the city database. You can download this from http://www.maxmind.com/
app/geolitecity. Follow the download and installation instructions there. We need to tell our GeoIP "server"
which database to use. GeoIP_new is a little too simple as we cannot control the choice of database. Looking
in the GeoIP.h header file, we see three potentially promising routines:

GEOIP_API int GeoIP_db_avail(int type);
GEOIP_API GeoIP* GeoIP_open_type (int type, int flags);
GEOIP_API GeoIP* GeoIP_open(const char * filename, int flags);

If type identifies which database to open, we can check whether the database is available and use that
with GeoIP_open_type. If we have the database file in a non-standard location, we can use GeoIP_open
to provide the full file name.

The type should be one of the GeoIPDBTypes enumerated values and we can try
GEOIP_CITY_EDITION_REV1 (with a value of 2) as the possible option. So let's create a CIF for calling
GeoIP_db_avail and call that:

callCIF(CIF(sint32Type, list(sint32Type)), "GeoIP_db_avail", 2L)

This returns 0, i.e. not available for me. We can try the different options, but GeoIP seems to only see the
country database. So let's try to load the file by name.

We need to create a CIF for GeoIP_open and invoke it:

cif = CIF(pointerType, list(stringType, sint32Type))
db_city = callCIF(cif, "GeoIP_open", "/usr/local/share/GeoIP/GeoLiteCity.dat", 0L)

This successfully returns a pointer. So now we can return to obtaining a record:

r = callCIF(GeoIP_record_by_addr_cif, "GeoIP_record_by_addr", db_city, "169.237.46.32")

And this also returns successfully. We probably don't want the mutable inputs so we can change our call

r = callCIF(GeoIP_record_by_addr_cif, "GeoIP_record_by_addr", db_city, "169.237.46.32", returnInputs = FALSE)

Now we have the record which is a pointer to the 12-element struct displayed above. Since we want to
access fields in that struct, we need to create a description of the types of elements in the struct. We can do
this programmatically, but for now we will do it manually.

We need to create a new type similar to sint32Type, stringType, etc. but for describing this particular
GeoIPRecord structure. We use the function structType() to do this. We pass it an ordered list of the
types of the fields in the struct. So for this struct, we would use R code something like

GeoIPRecord_type =
 structType(list(stringType, # country_code
 stringType, # country_code3
 stringType, # country_name
 stringType, # region
 stringType, # city
 stringType, # postal_code
 floatType, # latitude
 floatType, # longitude
 sint32Type, # the union element
 sint32Type, # area_code
 sint32Type, # charset
 stringType # continent_code
))

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.maxmind.com/app/geolitecity
http://www.maxmind.com/app/geolitecity

Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit

5

Now that we have this description, we can use it to have Rffi retrieve individual fields from the pointer to
the struct or copy all of the fields to an R list. The two functions to do this are getStructField() and
getStructValue(). We will access the latitude and longitude fields. Unfortunately, we didn't put names
on the elements of the struct description so R doesn't know how to match latitude to the 7th element. So
we can use the index of the element using

getStructField(r, 7, GeoIPRecord_type)

and we get our value. Similarly, we can get the city name with

getStructField(r, 5, GeoIPRecord_type)

Using indices is not a good idea. So we should put names on the elements in the list we pass to struct-
Type():

GeoIPRecord_type =
 structType(list(country_code = stringType,
 country_code3 = stringType,
 country_name = stringType,
 region = stringType,
 city = stringType,
 postal_code = stringType,
 latitude = floatType,
 longitude = floatType,
 "?" = sint32Type, # the union element
 area_code = sint32Type,
 charset = sint32Type,
 continent_code = stringType
))

Now we can use a name to access the field:

getStructField(r, "latitude", GeoIPRecord_type)
getStructField(r, "city", GeoIPRecord_type)

We can even get multiple values in a single call:

getStructField(r, c("latitude", "city", "region"), GeoIPRecord_type)

There are lots of other things we can look at in the API that are more complex, e.g. GeoIP_next_record,
GeoIPRegion struct and fixed length arrays, the union, etc., but we will return to those later. For now we
have the information we want from GeoIP and we are working with simple/built-in data types and a single
struct. If we wanted to access the fields in the GeoIP object, we would describe its structure in the same way
as for the GeoIPRecord. This would give us access to the name of the file, when it was last updated, etc.

We will take a brief look at how we can access global variables. libGeoIP has several global variables which
are strings or arrays of strings or pointers to strings. For example, GeoIPDBFileName is a pointer to a string,
GeoIPDBFileName is a string and GeoIP_country_code is an array of 253 strings of length 3. Once we
describe the type of the variabe, we can use getNativeValue() to retrieve the value of the object. This
will convert the C value to an R object using the same conversion mechanism as used in converting the
return value via callCIF().

So let's find the value of GeoIPDBFileName:

getNativeValue("GeoIPDBFileName", stringType)

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/Rffi

Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit

6

Note

Come back to this and accessing arrays in R by indexing, etc.

Cleaning up the CIF interfaces
Before we turn our attention to how we might automate a lot of the work we did above, we will think about
how we might like to have the R interface to these routines and data structures. Firstly, we want to hide
the create of the CIFs and the calls to callCIF() and provide R functions that are direct proxies for the
C routines with all these details inside the R functions. Secondly, we would like to define classes for the
pointers that are returned so we can identify the type of object to which they point. We also would like to
have $() and [[() operators for accessing fields in a struct rather than having to cal getStructField().
Additionally, if we are making repeated calls to the same routine, we don't want to incur the penalty of
having to find the address of the routine in each call. So our functions should cache that on the first call or
when they are defined. We can do this with closures or a global variable.

Automating the Interface Generation
invisible(sapply(c("const.R", "createRFunc.R", "defClasses.R", "tuTORType.R", "tuToFFI.R"), source))

We now turn our attention to how we can programmatically obtain descriptions of C routines and data
structures and then use these to create CIFs and struct types so that we don't have to manually build the
interface between R and C code. We use the RGCCTranslationUnit package to read the C code. (We could
use RCIndex, but that is still a work in progress.) We first create a simple C file that merely includes the
GeoIP.h and GeoIPCity header file.

#include <GeoIP.h>
#include <GeoIPCity.h>

Then we generate the TU output from gcc with

gcc -fdump-translation-unit -o /dev/null -c Rgeoip.c

Now we can read this translation unit into R:

library(RGCCTranslationUnit)
tu = parseTU("~/Projects/org/omegahat/R/GeoIP/inst/doc/Rgeoip.c.001t.tu")

We are interested in the routines, so let's find all of them and then get the subset for the GeoIP interface:

funcs = getRoutines(tu)
funcs = funcs[grep("^GeoIP", names(funcs), value = TRUE)]

We will also be interested in the different enumerations used in the code, so let's find those also.

enums = getEnumerations(tu)
names(enums)

From the work we did manually, we are interested in the routines GeoIP_open and GeoIP_record_by_addr.
Because we want to access the fields in the struct returned by GeoIP_record_by_addr, we will be interest-
ed in the GeoIPRecord structure. We'll come by that passively when finding out about the signature for
GeoIP_record_by_addr.

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/RGCCTranslationUnit

Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit

7

Let's start with GeoIP_open. We have the node in the translation unit graph that corresponds to this routine's
declaration. We now want to pull together all the information about the pieces of this routine and we use
resolveType() for this. We pass it the node and the translation unit so it can follow all the relevant links:

ip.open = resolveType(funcs[["GeoIP_open"]], tu)
ip.open

Note that the names of the parameters aren't available in the TU from GCC and we use simple numbers!

We can see the types of the parameters printed on the console, but now we want to programmatically access
them and map to the corresponding FFI types. We can loop over the parameters, fetch the type of each
and pass this to gccTUTypeToFFI(). As the name suggests, the function maps a GCC-TU type to the
corresponding FFI type. So our code to get the inputs for creating the CIF for the routine is

parmTypes = lapply(ip.open$parameters, function(x) gccTUTypeToFFI(x$type))
rt = gccTUTypeToFFI(ip.open$returnType)

Now we can create the CIF:

ip.open.cif = CIF(rt, parmTypes)

We may want to add information about whether the parameters are mutable or not by looking for const
declarations.

Next we will create an R function named GeoIP_open and have it accept 2 parameters and call the corre-
sponding C routine. Our function can be built from the description of the routine ip.open. The function
needs to know the name of the R variable containing the relevant CIF, i.e. oip.open.cif, or alternatively create
the CIF itself, either once or each time the function is called. The function then merely invokes callCIF(),
passing the 2 arguments it receives. So the function would be

GeoIP_open = function(x1, x2, ..., .cif = ip.open.cif) {
 callCIF(.cif, ip.open.cif, "GeoIP_open", x1, x2, ...)
}

(The fact that the parameter names are lost in the translation unit is a pity. We are working on an approach
where they are not.) Note that we have allowed the caller to specify a different CIF should she want. We have
also provided a ... argument to allow arguments to be passed on to callCIF(), i.e. returnInputs and
any others we add. Instead of referring to a variable that contains the CIF, we could provide an expression to
create the CIF as the default value for .cif. To do this, we would get not the CIF types for the parameters
and return type, but rather then names of these variables and create the call to CIF() with the elements
explicitly articulated, i.e.

GeoIP_open = function(x1, x2, ...,
 .cif = .cif = CIF(pointerType, list(stringType, sint32Type))) {

}

Our function should also convert the result to an explicit reference to a GeoIP object. We should define a
class, say GeoIP_ref, which is a sub-class of RCReference, and turn the pointer into an instance of
this class. We should define methods for the $ and [[operators for this reference class to access individual
fields using getStructField(). Since a GeoIP object is a struct in C, we should also define a class in
R that mirrors that struct and has the same slots. We should also provide a coercion method to transfer a C
reference to a GeoIP object to the R type by calling getStructValue(). So mapping this routine to an
R function involves a lot of peripheral functions that are done just once for each "complex" data structure.

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit

Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit

8

We want to write a function that will take a GCC-TU description of a routine and create the R code to call
that routine, i.e. the routine above.

Of course, in creating our CIF and function and methods, we have had to do some programming using the
translation unit code. The amount of effort is at least as much as when we did it manually by reading the
header file ourselves, although we have a much cleaner and more comprehensive interface. The important
thing to recognize, however, is that we can automate this. While we did go through all the steps in detail,
these can be put into a function to create the CIF for an arbitrary routine. And since we have information
for all the routines, we can generate CIFs for the entire GeoIP library, or any C library for that matter.

The RGCCTranslationUnit package provides the functions to create the R code described above for arbitrary
routines and structure definitions. We can use them as follows to create an interface to GeoIP_open and
GeoIP_record_by_addr:

ip.open = resolveType(funcs[["GeoIP_open"]], tu)
define(createRFunc(ip.open))
define(defStructClass(ip.open$returnType@type))
record = resolveType(funcs[["GeoIP_record_by_addr"]], tu)
define(createRFunc(record))
define(defStructClass(record$returnType@type))

We can find out what classses and functions were defined with

getClasses(globalenv())
ls(pattern = "^GeoIP")

We used closures, so all of the CIF and struct type definitions were made locally within the

The next thing we might want to do is write the generated code to a file so that we can use it in other R
sessions. Instead of calling define(), we can store the generated code and then use cat() to write it to
a file. So we generate it as follows:

code= list(createRFunc(ip.open),
 defStructClass(ip.open$returnType@type) ,
 createRFunc(record),
 defStructClass(record$returnType@type))

Then we can write it with

cat("library(Rffi)",
 "dyn.load('/usr/local/lib/libGeoIP.dylib')",
 unlist(code), sep = "\n", file = "geoIP.R")

Now that everything is defined, we can load the DSO and call the functions

dyn.load("/usr/local/lib/libGeoIP.dylib")
db = GeoIP_open("/usr/local/share/GeoIP/GeoLiteCity.dat", 0L, FALSE)
class(db)
r = GeoIP_record_by_addr(db, "169.237.46.32", FALSE)
class(r)
names(r)
r$city
r$area_code
r$latitude
r$longitude

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/RGCCTranslationUnit

Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit

9

The following code takes 1000 IP addresses from a web log and gets the city for each:

load("ip1000.rda")
o = sapply(ip, function(i) GeoIP_record_by_addr(db, i, returnInputs = FALSE)$city)

Enumerations
We have looked at working with routines and different data structures. We now return to enumer-
ations and symbolic constants. We saw the GeoIPOptions data type which are values we pass to
GeoIP_open or GeoIP_new. The possible values are GEOIP_STANDARD, GEOIP_MEMORY_CACHE,
GEOIP_CHECK_CACHE, GEOIP_INDEX_CACHE and GEOIP_MMAP_CACHE. These labels corre-
spond to the values 0, 1, 2, 4, and 8, respectively, but of course the names are far more suggestive of the
meaning. As a result, we want to use the symbolic names in R. So we can define R variables with the same
names and values:

GEOIP_STANDARD = 0L
GEOIP_MEMORY_CACHE = 1L
GEOIP_CHECK_CACHE = 2L
GEOIP_INDEX_CACHE = 4L
GEOIP_MMAP_CACHE = 8L

Note that we have explicitly made these integers.

There are three aspects of this we want to consider. The first is somewhat cosmetic and a matter of conve-
nience. All of these values start with the string "GEOIP_". It would be more convenient to optionally refer
to the values without this common prefix, e.g. STANDARD, MEMORY_CACHE, etc. Secondly, while
the GeoIP API declares the flag parameter type as int, we should use explicit enumeration types when this
is what is expected. This helps to catch errors in the code and is also clearer. If a routine is declared with
an enumeration parameter, we must be able to validate the value as being from the set of possible values.
We can achieve this by defining a class for the enumeration type in R and defining coercion methods from
integers or names to the actual value. Furthermore, we can use the symbolic names on the integer values to
make the values more intelligible for humans to read. The third issue is that not all enumerations are simple
mutually exclusive options. Some enumerations are intended to be combined together as bitwise-AND val-
ues and then compared to the individual possible values via bitwise OR operations. This is typically done
using powers of 2 for the values to set individual bits. This might be done with an enumeration in which
the values for the individual elements are explicitly specified, e.g.

enum {
 CURLPROTO_HTTP = 1,
 CURLPROTO_HTTPS = 2,
 CURLPROTO_FTP = 4,
 CURLPROTO_FTPS = 8,
 ...
};

or with a collection of pre-processor #define directives, e.g.,

#define CURLPROTO_HTTP (1<<0)
#define CURLPROTO_HTTPS (1<<1)
#define CURLPROTO_FTP (1<<2)
#define CURLPROTO_FTPS (1<<3)
 ...

. These come from libcurl and relate to the different protocols.

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit

Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit

10

A critical different between these and enumerations is that we combine two of these values via an OR
operation and we obtain a new and permissible value. For example, we can query whether the protocol to
be used includes HTTP or HTTPS with

protocol & (CURLPROTO_HTTP | CURLPROTO_HTTPS)

This is very different from an enumeration. We also want the object to identify its original components, so
we add combine the names of the individual elements as the name of the integer value. So to allow both
HTTP and HTTPS, we might use

CURLPROTO_HTTP | CURLPROTO_HTTPS

and we want the result to appear in R as

CURLPROTO_HTTP,CURLPROTO_HTTPS
 3

To address these issues, we define two basic classes - EnumValue and BitwiseValue. The first is used
as the root or base class for any new enumeration type we want to define. This is used for sets of simple
symbolic constants represented as enumerations. BitwiseValue is used for values that we can combine
together into a single value as in the curl protocol example above. To represent the different values of the
GeoIPDBTypes enumeration, we would use EnumValue to define a GeoIPDBTypes class in R:

setClass('GeoIPDBTypes', contains = 'EnumValue')

We create R variables for each of the values using the corresponding name in C code, e.g.,

`GEOIP_COUNTRY_EDITION` <- GenericEnumValue('GEOIP_COUNTRY_EDITION', 1, 'GeoIPDBTypes')
`GEOIP_REGION_EDITION_REV0` <- GenericEnumValue('GEOIP_REGION_EDITION_REV0', 7, 'GeoIPDBTypes')

We would then define a global variable that represents the entire enumeration definition, containing the
names of the elements and their values. This is used when performing conversions from numeric and string
values and validating values. And we finish the R code to handle such an enumeration by defining coercion
methods for converting values specified by integer or numeric or by the symbolic name as a string. These
allow us to have calls of the form

as("GEOIP_ORG_EDITION", "GeoIPDBTypes")
as(5, "GeoIPDBTypes")

For a bitwise enumeration, we define the same variables. We inherit the |() method for combining two
values of this type, e.g.,

GEOIP_CHECK_CACHE | GEOIP_MEMORY_CACHE

which yields

GEOIP_CHECK_CACHE | GEOIP_MEMORY_CACHE
GeoIPOptions 3

showing the value resulting from combining of the two elements, along with the name of the composition
and the class of the object.

Using the RGCCTranslationUnit package, we can resolve the enumeration definition nodes we find in the
data structures. The package attempts to determine which enumerations are really bitwise enumerations.
In the case of GeoIPOptions, it recognizes that all values are a power of 2 and so determines that it is a
bitwise enumeration and the resolved object is of class BitwiseEnumerationDefinition. For the
GeoIPDBTypes, the values do not suggest a bitwise enumeration and so we get an object of class Enu-
merationDefiniton. The code that does this is

tu = parseTU("~/Projects/org/omegahat/R/GeoIP/inst/doc/Rgeoip.c.001t.tu")

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://www.omegahat.org/RGCCTranslationUnit

Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit

11

enums = getEnumerations(tu)
TUOptions(checkBitwiseAtResolve = TRUE)
ip.opts = resolveType(enums$GeoIPOptions, tu)
ip.db.types = resolveType(enums$GeoIPDBTypes, tu)

We can now turn these descriptions into R code with genCode()

Processing all routines and data struc-
tures
library(Rffi); library(RGCCTranslationUnit)
RGCCTranslationUnit:::TUOptions(checkBitwiseAtResolve = TRUE)
tu = parseTU("~/Projects/org/omegahat/R/GeoIP/inst/doc/Rgeoip.c.001t.tu")
funcs = getRoutines(tu)
funcs = funcs[grepl("^GeoIP", names(funcs))]

sapply(paste("../../R/", c("createRFunc.R", "tuToRType.R", "tuToFFI.R", "genCode.R", "defClasses.R"), sep = ""), source)

funcs.code = lapply(funcs, function(x) createRFunc(resolveType(x, tu)))

ds = getDataStructures(tu)
ds = ds[grepl("^GeoIP", names(ds))]
rds = lapply(ds, resolveType, tu)
ds.code = lapply(rds, genCode)

If we want to source the code into an existing session, we can use

library(RGCCTUFFI)
code = genTUInterface("inst/doc/Rgeoip.c.001t.tu", pattern = "^GeoIP")

If we want the code so that we can put it in a package, we have to be

code = genTUInterface("inst/doc/Rgeoip.c.001t.tu", pattern = "^GeoIP",
 useClosure = TRUE,
 useGlobalCIF = TRUE,
 useGlobalFFIType = TRUE,
 putGlobalsInLoad = TRUE)

cat("library(Rffi)",
 "library(RAutoGenRunTime)",
 ".onLoad = function(...) dyn.load('/usr/local/lib/libGeoIP.dylib')",
 unlist(code), sep = "\n\n",
 file = "R/RGeoIP.R")

db = GeoIP_open("/usr/local/share/GeoIP/GeoLiteCity.dat", GEOIP_STANDARD, FALSE)
r = GeoIP_record_by_name(db, "www.omegahat.org", FALSE)
r[]
r[c("latitude", "longitude")]
r$lat
r[["lat"]]

r = GeoIP_record_by_addr(db, "169.237.46.32", FALSE)
r[]

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit

Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit

12

r[c("latitude", "longitude")]

ll = readLines(gzfile("~/omegahat.log.gz"), n = 7000)
addr = gsub("([^]+) .*", "\\1", ll)
dup = duplicated(add)
ip = addr[!dup]
#ip = unique()

library(Rffi) # for isNilPointer()
pos = sapply(ip, function(h) {
 r = GeoIP_record_by_addr(db, h, returnInputs = FALSE)
 if(isNilPointer(r))
 c(NA, NA)
 else
 r[c("longitude", "latitude")]
 })

If we process all of the lines in omegahat.log.gz, we end up with 265782 unique IP addresses. If we time
the sapply() loop below to get the locations, this takes

user system elapsed
1262.574 17.274 1425.822

to process them all or 0.005 seconds per IP address. There are 21 that cannot be matched.

i = which(is.na(pos[1,]))
ip[i]

We can use the Rffi package to create the CIF object describing this type of routine and then invoke it.

library(Rffi)
GeoIP_new = CIF(pointerType, list(sint32Type))

ip.opts = resolveType(enums$GeoIPOptions, tu)

Let's skip over the details of the bitwise enumeration for the present and we'll use the value of
GEOIP_STANDARD:

GEOIP_STANDARD = ip.opts@values["GEOIP_STANDARD"]

dyn.load("/usr/local/lib/libGeoIP.dylib")

So now we can call GeoIP_new

ipDB = callCIF(GeoIP_new, "GeoIP_new", GEOIP_STANDARD)

We probably want to define a class "GeoIP" and identify this pointer as an instance of this class

setClass("RCReference", representation(ref = "externalptr"))
setClass("GeoIP", contains = "RCReference")

ipDB = new("GeoIP", ref = ipDB)

Let's interface to the GeoIP_database_info and GeoIP_database_edition routines to check things are okay.

GeoIP_database_info = CIF(stringType, list(pointerType), FALSE)
GeoIP_database_edition = CIF(uint32Type, list(pointerType), FALSE)

callCIF(GeoIP_database_info, "GeoIP_database_info", ipDB@ref)
callCIF(GeoIP_database_edition, "GeoIP_database_edition", ipDB@ref)

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit
http://cran.r-project.org/web/packages/Rffi/index.html

Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit

13

Now let's see about calling GeoIP_id_by_addr or GeoIP_id_by_name. These have the same signature so
we can use the same CIF.

int.GeoIP_String = CIF(sint32Type, list(pointerType, stringType), c(FALSE, FALSE))

Then we can call this with

callCIF(int.GeoIP_String, "GeoIP_id_by_addr", ipDB@ref, "74.125.45.100")

Now let's look at the routine GeoIP_country_name_by_addr. This takes a GeoIP pointer and a string and
returns a string. So we define the CIF as

GeoIPString = CIF(stringType, list(pointerType, stringType))

Now we can use this to call the routine

callCIF(GeoIPString, "GeoIP_country_name_by_addr", ipDB@ref, "74.125.45.100")$value

Data Structures
Let's look at GeoIP_region_by_addr. This returns a pointer to a GeoIPRegion object. This is a struct con-
taining two elements, both strings of a fixed length 3, i.e. char [3]. We can create the CIF as

GeoIPRegion.GeoIP_string = CIF(pointerType, list(pointerType, stringType))

This will allow us to call the routine and get the pointer to the GeoIPRegion.

ans = callCIF(GeoIPRegion.GeoIP_string, "GeoIP_region_by_addr", ipDB@ref, "74.125.45.100")

Now we have to be able to identify the fields in the pointer to the structure. We can manually examine the
fields or we can use RGCCTranslationUnit to identify them.

ds = getDataStructures(tu)
geoDS = ds[grep("^GeoIP", names(ds), value = TRUE)]
reg = resolveType(resolveType(geoDS[["GeoIPRegion"]], tu))

We can extract the fields and their types. The names are obtained via

names(reg@fields)

The type of the first element is

reg@fields[[1]]@type

and this is an ArrayType. It contains the length and element type of the array.

http://www.omegahat.org/Rffi
http://www.omegahat.org/RGCCTranslationUnit

	Accessing the GeoIP library from R with Rffi and RGCCTranslationUnit
	Table of Contents
	The GeoIP library
	Manually Interfacing to the C library with Rffi
	Cleaning up the CIF interfaces
	Automating the Interface Generation
	Enumerations
	Processing all routines and data structures
	
	Data Structures

