Display San Francisco Cab Data

Table of Contents

1100 [UTox 1 o o U 1
A SINGIE CAD oo e a e e e e e s ——aaa e e s —aaaaas 2
Yo o 1o I 0= = PRSPPI 2
Markers with Event INfOrmMationooviiiiiiiiiiieiic e e e e e e e e e e neaees 3
L0 1T oo D PSPPI 3
2 Y T YO EEPR 4
Selecting Driver Shifts within a Cab or Different Cabscccccveeiiiiiciiiiie e 4
HIgh-1EVEL FUNCLIONSoiieiiieee e e e e e e e e e e e e e e e e e e s s nrabaeeeaeeeeaanes 5
The SIMPIE POIYIING ..o e e e e e e r e e e e e e s e e rraeeeaaeas 5
Y= = =P 5
Markers With INfOrMEBHIONcoiiiiiiii e e e e e e e e s e e nrarereeaeeas 6
L 1T oo 10 PP 6
2 Y T YRR 7
REBI-TIME DELAeiiiiiiiiiii ittt ettt et st e st s e e e e 7
Introduction

This an exploration in using the Google Maps APl by generating HTML & JavaScript code in R that is
then displayed in a Web browser. We will use the data from http://cabspotting.org. (Note we can collect
our own in real time.)

Well grow this example incrementally.

1

2.

We start by displaying asingle cab and showing its path. cabl.html

Next we add markers on the map that shows where a passenger was picked up and ancther marker type
for where a passenger was let off. We add HTML content to the marker so that when the viewer clicks
on the marker it is displayed in a popup window on the map. The information gives information about
what type of event this was (drop-off or pickup), the date and time of the event, the passenger number
(in sequence) and the total number of passengersin this period, and the duration of the ride. cab3.html

Next well break the path into different sub-paths corresponding to separate driver shifts or different
passengers. cab4.html

We move then to providing a choice menu or aselection list that allows the viewer to select which cab(s)
to display and then we display those polylines. See cab5.html & cabShiftToggle.html

WEe'll use polyline encoding for efficiency and greater control of appearance when zooming.

We aso show how we can keep the datain an XML format and separate from the JavaScript code. The
JavaScript reads that at run-time and generates the objects. See data.html

http://cabspotting.org
cab1.html
cab3.html
cab4.html
cab5.html
cabShiftToggle.html
data.html

Display San Francisco Cab Data

A Single Cab

We start with asingle cab.
R
f = "new_enyenew . txt"
a = read.tabl e(f, header = FALSE, col.nanmes = c("lat", "long", "occupied",
col Casses = c("nuneric", "numeric

a[[3]] = as.logical(a[[3]])
class(a[[4]]) = c("POSI Xt", "PCSIXct")

WEe'll start by creating the JavaScript code that creates the polyline. We do this by creating an array of
GLatLng objects.

R
tnmp = sprintf("new GLatLng(% 4f, % 4f)", alat, along)
R
cc = paste("new GPolyline([", paste(tnp, collapse = ",\n\t"),
"]) "1
dQuot e(" #FF0000"), ",", 2,
")", sep = "\n")
Now we have to center the map at the "center" of the path.
R

zoom = 11
sprintf("mp.setCenter(new GLatLng(% 4f, % 4f), %)",
mean(range(a$l at)), nean(range(a$l ong)), zoom

Adding markers

The ideais that we will determine where the cab picked up or dropped off a passenger. Let's reverse the
order of therows in our cab data frame. Thiswill alow us to think of time asincreasing with row.

R
b = a[nrowm(a):1,]
Now we find the rows when the occupied status changes

R
w = whi ch(di ff(b$occ) != 0)
If we add 1 to this, we have the corresponding row in b. So now we have the location for the marker. We
also need to know if each of these is occupied or unoccupied. This depends on the starting value.

R
| abel s = c("occupi ed", "unoccupi ed")
if(b[1, "occupied"])
| abel s = rev(l abel s)
status = factor(labels[rep(c(1,2), length = 1length(w))], |evels = I|abels)
So now we can add the markers
R

nti rrell)
n, llint

Display San Francisco Cab Data

tnmp = sprintf("\tmap.addOverl ay(new Gvarker (new GLat Lng(% 4f, % 4f)));", b[w, "lat
paste(tnp, collapse = "\n")

The above produces markers for each event. But we want to color code them as being a drop-off or pick-
up. Also, we want to allow the viewer to click on the marker and get information about the particular event.

Markers with Event Information

R
i cons = c("occupied" = "http://gmaps-sanpl es. googl ecode. com svn/trunk/ markers/red/
"unoccupi ed" = "http://gmaps-sanpl es. googl ecode. coni svn/ trunk/ mar ker s/ gr

htm = sprintf("Cab: %s</
nanes(cabCounts)[1], nanes(cabCounts)[1],
seg(al ong = w),
I engt h(w),
c("occupi ed" = "drop-of f", unoccupied = "pick-up")[as.character(s
as. character(a$time)[w + 1]

)

tnp = sprintf('\tmap. addOver| ay(creat eMarker (new GLat Lng(% 4f, % 4f), "%", "%"))
bfw, "lat"], b[w, "long"], htm, icons[as.character(status)])
cat (paste(tnp, collapse = "\n"))

Using XML

A different way to present the markers (without color) for the location of the drop-offs and pickupsisto use
generic JavaScript code and specify the marker location separately using an XML document. Building on
what we have from the previous section (i.e. the row number in b for the pick-up and drop-off events)

R
m = newXM_Node(" mar kers")
i nvi si bl e(sappl y(w, function(i, p)
newXM_Node(" mar ker ",
attrs = c(lat = b[i, "lat"], Ing = b[i,"long"]),

parent = p),
m)
saveXM.(m "~/ Books/ XM_Technol ogi es/ Rpackages/ R2Googl eMaps/ i nst/ sanpl eDocs/ mar ker s
Then we can open data.html. This has been partially modified (from the original version downloaded from
the Google Map examples) to center the map on the region of interest and specify a different datafile. We
would do this programmatically in R with

R
doc = htn Parse("~/ Books/ XM_Technol ogi es/ Rpackages/ R2Googl eMaps/ i nst/ sanpl eDocs/ da
body = get NodeSet (doc, "//body")[[1]]
xm Attrs(body) = c(onload = sprintf("initialize('mrkers.xm"', %4f, %4f)",
nmean(range(b$l at)), nean(range(b$long))))

data.html

Display San Francisco Cab Data

By day

We can display the path the cab took broken up by day/shift. We find the shifts by finding the observations
in the data where there is a gap of an hour or more. We can create a new variable which identifies the shift
number with the following code:

R
i = diff(b$tine) > 60"2
shift = c¢(0, cunmsun(i))
Now we can operate on each shift using by () and create the code that creates the poly linesfor that, e.g.

R
col ors = substring(rai nbow | engt h(uni que(shift))), 1, 7)
k = by(cbind(b, color = colors[shift + 1]), shift, nakePol yline)
We want the value of the shi f t in each group to select the color.

We can define makePol yl i ne() something like the following based on what we did for the entire day.

R
makePol yl i ne =
function(data, var = character())
{
col or = as. character(data$col or)[1]
tnp = sprintf("new GLatLng(% 4f, % 4f)", data$l at, data$l ong)

tmp paste("new GPolyline([", paste(tnp, collapse = ",\n\t"),

]! L)
dQuot e(color), ",", 2,
")", sep = "\n")

i f(length(var))
tnp = paste(var, tnp, sep =" =")
sprintf("mp. addOverlay(%);", tnp)
}

Selecting Driver Shifts within a Cab or Dif-
ferent Cabs

Here we look at how we can allow the viewer to control what is displayed in the view. WEe'll break asingle
cab's datainto different shifts aswe did before.

R
d readCabTrace("/ User s/ duncan/ Dat a/ cabspot ti ngdat a/ new_ugt hfu. t xt")
[di ff(d$time) > 6072
d$shift = c(0, cunsun(i))
d$col ors = as.character(substring(rai nbow(| engt h(uni que(d$shift))), 1, 7))[d$shift
Now we generate the code. We assign each GPolyline to an element of a JavaScript array which we will
call polylines.

Display San Francisco Cab Data

R
k = by(d, d$shift, function(x) makePol yline(x, paste("polylines[", x$shift[1l], "]"

We need to add this code to the initialize and also to define the polylines variable. We write the code in k
to afunction drawPaths in a separate file so that we can easily include it in our HTML document. We then
change the initialize function to call this, passing it the GMap2 object.

R
cat ("function drawPat hs(map)", "{", k, "}", sep ="\n", file = "drawPaths.js")

Now we can add the form and checkboxes to the HTML document. We add one for each shift and we have
its onMouseUp method call the JavaScript function toggle, passing it the relevant overlay, i.e. element of
polylines (remembering we use O-based counting JavaScript), and whether to show or hide the overlay.

R

form = newXM_Node("forni)

dl = newXM_.Node("dl", parent = form

i nvi si bl e(

sappl y(uni que(d$shift),

function(i, p)
newXM_Node("dt", newXM_Node("input", paste("Shift", i), attrs = c(type =
checked = "1",
onMbuseUp = sprintf("toggleOverlay(polylin
parent = p),
dl))
We should also add areset button to the form.

R
newXM_Node("input", attrs = c(type="button", value="Reset", onclick="reset()"), pa

Now we add this to the HTML document along with references to the JavaScript files drawPath.js and
togglejs.

Theresult is cabShiftToggle.html

High-level Functions

In the examples above, we have glossed over how we add the content to the HTML documents. We now
work through some of these examples using high-level functions in R that generate the code from R data
objects and construct the HTML file and its contents to display the map.

The Simple Polyline

center = c(mean(range(b$l at)), nean(range(b$long)))
code = addOverl ay(gpol yline(b))
d = googl eMapsDoc(code, center, zoom= 11, dim= c(750, 700), file = "sinplePolyli

Markers

cabShiftToggle.html

Display San Francisco Cab Data

w = whi ch(di ff(b$occ) != 0)
| abel s = c("occupi ed", "unoccupi ed")
if(b[1, "occupied'])
| abel s = rev(l abel s)
status = factor(label s[rep(c(1,2), length = length(w))], Ilevels = |abels)

R

code = gmarker(b[w, "lat"], b[w, "long"], addOverlay = TRUE)
d = googl eMapsDoc(code, center, zoom= 11, dim= c¢c(750, 700), file = "sinplePolyli

Markers with Information

The R2GoogleM aps package doesn't do much to help here with generating the code asit is quite customized,
using a a different JavaScript function to create the marker that has icons and such. The package does help
in creating the document and bringing in the necessary JavaScript code.

As we did above, we need to compute some variables that go into the content, specifically the HTML for
each marker.

R
w = whi ch(diff(b$occ) !'= 0)
icons = c("occupied" = "http://gmaps-sanpl es. googl ecode. com svn/trunk/ mar kers/red/
"unoccupi ed" = "http://gmaps-sanpl es. googl ecode. coni svn/ trunk/ mar kers/ gr

| abel s = c("occupi ed", "unoccupi ed")
if(b[1, "occupied'])

| abel s = rev(I abel s)
status = factor(labels[rep(c(1,2), length = length(w))], I|evels = I|abels)

htm = sprintf("Cab: ¥%s</

"oilrag", "oilrag",

seg(along = w),

[l engt h(w),

c("occupi ed" = "drop-off", unoccupied = "pick-up")[as.character(s

as. character(b$tine)[w + 1]

)
Now we can create the HTML document and the map and specify the extra JavaScript file to be included.

R
code = sprintf('\tmap. addOverl ay(creat eMarker (new G.at Lng(% 4f, % 4f), "%", "9%")
b[w, "lat"], b[w, "long"], htm, icons[as.character(status)])
d = googl eMapsDoc(code, c(nmean(range(b$l at)), mean(range(b$lon))),
zoom = 11, file = "infoMarkers.htm ", scripts = "../javascript/

Using XML

Thefunction mar ker Dat a() creates datain the format we want for specifying marker locationsvia XML.
We usethisas

R

http://www.omegahat.org/R2GoogleMaps

Display San Francisco Cab Data

mar kerData(b[w,], file = "markers.xm")

Now we have to use this data in an HTML document that creates a map and displays the markers. We
need to include the genericMarkerData.js script in our file as that knows how to read our the XML data.
It provides an initialize function that will create the map and the markers, and it also provides a separate
function (makeM arkers) that we can call to create the markers ourselves.

R
googl eMapsDoc(' makeMar ker s(" markers.xm ", nap);",
c(nmean(range(b$l at)), mean(range(b$lon))),
zoom = 12,
file = "nydata. htm ", scripts = "../javascript/genericMarkerData.js"

If we wanted to use the initialize function from genericMarkerData.js and let it add the controls, specify
the zoom, etc. we can. Instead of providing our own codeto googl eMapsDoc() , we want to change the
onload code that is evaluated when the document is loaded. We want to avoid building our own initialize
function, so we specify an empty string for the code we provide and make it an object to say "treat
this as the entire function”. So our call is

R
googl eMapsDoc(I ('"'),
onload = sprintf('initialize("markers.xm", %4f, % 4f)', nmean(range

zoom = 12,
file = "nydatal. htm ",
scripts = "../javascript/generichMarkerData.js"

)

and we get the same result, except we have different controls and zoom levels that are hard-coded into the
initialize function in genericMarkerData.js. We could of course make that function richer and have it accept
optional parameters.

By day

Real-time Data

The cabspotting site has areal time feed and API. We can find out which cabs have data available within
the last m minutes.

R
htt p://cabspotting. org/ cab. xm . php?cab=ugt hf u&m=480

The following functions perform the download and format the data.

['ibrary(XWM)
l'ibrary(RCurl)

get Cabs =
function(m = 10)

{
X = getForm(' http://cabspotting.org/cabs.xm .php', m=n

Display San Francisco Cab Data

}
get Cabl nfo =
function(m = 60, cabs = nanes(getCabs(m), conbine = TRUE)
{
ans = | appl y(cabs, getOneCab, m
i f (conbi ne)
do.call ("rbind", ans)
el se {
nanes(ans) = cabs
ans
}
}
get OneCab =
function(id, m= 60)
{
ans = getForn("http://cabspotting.org/cab.xm .php", cab =
doc = xm Par se(ans)
tnp = xm SAppl y(xm Root (doc), xm Attrs)
tnp = as.data.frame(t(tnp), row nanmes = 1:ncol (tnmp))

doc = xml Parse(x, asText = TRUE)
structure(as.integer(xm SAppl y(xm Root (doc), xml GetAttr,

nanes(tnp) = c("cab", "lat", "long", "status", "tinme")
tmp$tinme = as. POSI Xct (as. nuneri c(as. character (tnp$tine)),
tnp

"updates")),
nanes = xm SAppl y(xm Root (doc), xm GetAttr, "id"))

id, m=m

origin

"1970-01- 01")

	Display San Francisco Cab Data
	Table of Contents
	Introduction
	A Single Cab
	Adding markers
	Markers with Event Information
	Using XML
	By day
	Selecting Driver Shifts within a Cab or Different Cabs
	High-level Functions
	The Simple Polyline
	Markers
	Markers with Information
	Using XML
	By day

	Real-time Data

