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Abstract

General Purpose Graphical Programming Units (GPGPUs) provide the ability to per-
form computations in a massively parallel manner. Their potential to significantly speed
computations for certain classes of problems has been clearly demonstrated. We describe
an R package that provides high-level functionality that allows R programmers to experi-
ment with and exploit NVIDIA GPUs. The package provides an interface to the routines
and data structures in the CUDA (Compute Unified Device Architecture) software de-
velopment kit (SDK), and also provides higher-level R interfaces to these. Currently,
programmers write the code that runs on the GPU in C code but call that code and man-
age the inputs and outputs in R code. We describe experimental approaches to compile
R directly so that all computations can be expressed in R.
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1. Introduction

In recent years Graphics Processing Units (GPUs) have emerged as the dominant compu-
tational platform for massively parallel computation. Fortunately, unlike CPUs, the per-
formance of GPUs continues to improve dramatically from year to year. While the high-
throughput, memory-light paradigm of GPU programming is not well-suited to all problems,
it is well-suited to particular classes of computations, some quite common in statistics. As the
size of both modern data sets and modern computational requirements continue to grow it is
increasingly important for statisticians to be able to leverage the power of GPUs to conduct
these computations in an efficient manner.

In presenting the RCUDA package we assume the reader has a basic familiarity with GPUs
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and the NVIDIA-specific Compute Unified Device Architecture (CUDA) programming model.
For an introduction to GPU programming and CUDA see Kirk and Hwu (2012). As we will
see in later sections RCUDA provides a high-level interface to the CUDA SDK and lessens
the burden for R programmers seeking to utilize the power of GPUs. Nonetheless, GPUs are
tailored for massively parallel computation and perform best when the programmer under-
stands the fundamentally different computational model required by GPUs. Most general
purpose programming on GPUs (GPGPU) is built upon a slightly extended version of the C
programming language (e.g., CUDA, OpenCL) and requires the programmer to think about
two processing units - the host CPU and the GPU device. When coding in CUDA C the
programmer must explicitly allocate and move data from the host to the device and back.
This memory management and data transfer introduces a programming burden as well as
a performance cost. As we will see in section 2.1, RCUDA has the ability to automatically
handle much of the programming burden. The performance costs of data transfer to/from the
device are problem specific and are an important consideration when designing and optimizing
GPU code.

The RCUDA package is quite different in intent and functionality than other GPU-related
R packages such as gputools (Buckner, Seligman, and Wilson 2011) and rgpu (Kempenaar
and Dijkstra 2010). gputools implements several commonly used statistical algorithms in C
code that runs on a GPU and provides R functions to invoke those with data in R. The set of
functions is fixed and R programmers wanting to implement a different algorithm or approach
for one of these algorithms must program in C.

The rgpu package also provides implementation of a few algorithms written in C that run
on a GPU. However, it also provides an “interpreter” for R scalar mathematical expressions.
This does not appear to handle arbitrary code and also has to map each expression from R
to a different representation for each call from R to the GPU. It also interprets this on the
GPU rather than using native code. We discuss in section 5 how might be able to compile a
larger subset of the R language to native GPU code.

The RCUDA package is similar in nature to OpenCL (Urbanek 2012). Whereas OpenCL can
in principal be used with all GPUs, RCUDA specifically targets the CUDA SDK and NVIDIA
GPUs. This is based on both the belief that the dedicated CUDA SDK can outperform the
more general OpenCL programming model (Khronos OpenCL Working Group 2008) and the
wider popularity of CUDA in the GPGPU community. In addition, RCUDA aims to expose
the entire SDK to R programmers. The OpenCL package provides the essential functionality
to invoke kernels on the GPU, passing data from R to the GPU and back. This difference
illustrates one of the primary motivations of the RCUDA package. We want R programmers to
experiment with different features of the SDK and to explore the performance characteristics of
various programming strategies for GPUs. Different GPUs exhibit quite different performance
characteristics, and different programming paradigms and even tuning parameters also can
have significant impact. For this reason, we want to be able to be able to control these aspects
dynamically in a high-level language rather than fix them statically in a language such as C.

2. The Basics of the RCUDA package

In this section, we describe both the essential concepts of the CUDA SDK and the R interface
to it provided by the RCUDA package.
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At its simplest, computing with GPUs involves

1. writing (and compiling) a kernel that performs the computations,

2. allocating memory on the GPU device,

3. copying data from the host to the device

4. invoking the kernel

5. copying the results back from the device to the host.

We now discuss each of these steps and how they are handled by RCUDA.

The most fundamantal component of any GPGPU code is the kernel. At present we recom-
mend that the kernel be compiled outside of R. This means that an R programmer can write
and compile a kernel or perhaps that it be compiled by somebody else and made available
to the R programmer. The RCUDA package can compile a kernel for the R user but it is
typically more convenient to use the command-line to compile the code directly. We now use
the dnorm() kernel as an example. The code is reasonably simple for a CUDA kernel and
is shown in figure 1. Again, we assume the reader has some familiarity with CUDA kernels,
and include the code in figure 1 for illustration only. For readers who are less familiar with
CUDA C, the key parts of the code are the __global__ qualifier (which indicates that this is
indeed a kernel), the thread/block indexing (handled using standard CUDA conventions) and
the actual calculation of the normal density. As written, the kernel is designed to be executed
over a specfied number of threads as chosen by the programmer. The indexing portion of
the code ensures that each thread operates on a unique element of the input vector (or does
nothing if the index is out of bounds).

Before we can invoke a kernel, we have to load it into the host process, i.e. R. We do this
by loading the compiled code as a Module. We use the R function loadModule() to do this.
It can read the code in various formats - the PTX text format and the two binary formats
cubin and fatbin.

The code can be compiled at the command line using

nvcc --ptx -o dnorm.ptx dnorm.cu

Alternatively, we can compile the two binary formats with

nvcc -cubin -m64 -gencode arch=compute_10,code=sm_10 -o dnorm.cubin dnorm.cu

nvcc -fatbin -m64 -gencode arch=compute_10,code=sm_10 -o dnorm.fatbin dnorm.cu

respectively. Note that the arch flag specifies the GPU compatability level. Once we have
compiled the code, we can load it with

filename = system.file("sampleKernels", "dnorm.ptx", package = "RCUDA")

mod = loadModule(filename)

Next, we can obtain a reference to the particular routine in the module that we want to
invoke. The R interface makes the module appear like a list and so we can use
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extern "C"

__global__ void dnorm_kernel(float *vals, int N, float mu, float sigma)

{

// Taken from geco.mines.edu/workshop/aug2010/slides/fri/cuda1.pd

int myblock = blockIdx.x + blockIdx.y * gridDim.x;

/* how big is each block within a grid */

int blocksize = blockDim.x * blockDim.y * blockDim.z;

/* get thread within a block */

int subthread = threadIdx.z*(blockDim.x * blockDim.y) +

threadIdx.y*blockDim.x + threadIdx.x;

int idx = myblock * blocksize + subthread;

if(idx < N) {

float std = (vals[idx] - mu)/sigma;

float e = exp( - 0.5 * std * std);

vals[idx] = e / ( sigma * sqrt(2 * 3.141592653589793));

}

}

Figure 1: The C code defining a GPU kernel to compute the Normal density. This kernel
writes the results back into the input vector, overwriting its values.

kernel = mod$dnorm_kernel

to get this reference.

We now have the kernel, so before executing it we need the data to pass to it. Here for
simplicity we just simulate the data in R via the rnorm() function.

N = 1e6

mean = 2.3

sd = 2.1

x = rnorm(N, mean, sd)

As outlined at the beginning of section 2, memory needs to be allocated on the device, and the
data copied from host to device before invoking the kernel. However, using the R interface to
the GPU provided by RCUDA we can simply call the kernel with host data using the .cuda()
(or the synonomous .gpu()) and the R interface will allocate memory and copy the R vector
argument to the device without user input. In short, we can invoke the kernel with

ans = .cuda(kernel, x, N, mean, sd, gridDim = c(62, 32), blockDim = 512)

Note that we must explicitly specify the dimension for the grid and block to be used when
launching the kernel. Both arguments can take positive integer inputs of up to three-
dimensions with any omitted dimensions defaulting to 1. We chose 62, 32 and 512 for this
example as the product of these exceeds the number of elements N. Since the number of
threads exceeds the number of elements to be operated on, there will be some redundant
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threads on the GPU (as determined by the if statement in figure 1). Since thread launches
are exceptionally cheap on GPUs, this over-saturation strategy is standard practice for GPU
programming.

The .cuda() function recognizes the inputs and determines which to copy to the device and
which can be passed directly (i.e. the scalar values N, mean and sd). As we will see later we
can pass arguments that refer to data or memory already on the GPU and .cuda() recognizes
that it doesn’t need to transfer this, but merely pass the reference as-is. The option of
using either host or device resident arguments in the call to .cuda() provides flexibility and
simplicity while retaining the ability to produce highly efficient code that minimizes data
transfers between the host and device.

When calling the .cuda() function with an R vector as an input argument, .cuda() recognizes
that since the data was passed from R, it may be modified by the kernel and thus returns the
vector. If there are multiple vector inputs, .cuda() returns all of these as a list in the same
style as the .C() function. However, .cuda() also recognizes if only one input argument is a
vector, and thus ans in our example also contains the actual vector of normal density values.
More generally, we can specify which inputs are to be copied back to R from the device via
the outputs parameter of the .cuda() function.

We conclude this simple example by noting that .cuda() executes the kernel calls using the
current context which we describe in section 2.2. This same context must be used to both
load the module and call any of its kernels.

2.1. Manually Allocating Memory on the Device

While the .cuda() function processes (most) R vectors for us, we may want to explicitly
control how values are passed from the host (CPU) to the device (GPU). The RCUDA
package provides functions to control this and also some short-hand, covenient mechanisms
for implementing the transfers. The two fundamental functions are copyToDevice() and
copyFromDevice(). These are reasonably flexible functions. copyToDevice() takes an R object
and copies its contents to memory on the GPU device. By default, it allocates the space on
the device, using information about the number of elements and the type of each element in
the R object to determine the space needed. For example, we can copy an R vector to the
GPU in the following manner:

dev.ptr = copyToDevice(x)

We can also explicitly allocate space on the device and then copy values to that space. The
function cudaMalloc() (and its alias cudaAlloc()) allocates space on the device. We pass it
the number of elements and either the size of each element (in bytes) or the name of the
element type which it looks up to determine the number of bytes for each element. We can
explicitly allocate memory and pass this as the destination target for copyToDevice(), e.g.

ptr = cudaAlloc(N, elType = "numeric")

copyToDevice(x, ptr)

Why would we want to explicitly allocate space on the device rather then letting R copy
vectors for us? The most common situation in which this is desirable is when we want to
allocate space on the device once and then reuse it to store different values at different times.
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For example, consider a simple non-parametric bootstrap in which we generate many samples
of the same length by sampling with replacement and apply some kernel to each generated
dataset. In this context we can reuse the same memory for each bootstrap dataset. In the
code below we demonstrate how to allocate the space once, copy the boostrap data to it each
iteration and then compute the necessary summaries via a call to a GPU kernel, e.g.,

ptr = cudaMalloc(length(x), elType = class(x))

replicate(B, {

copyToDevice(sample(x), ptr)

.cuda(kernel, ptr, N, mean, sd, gridDim = c(62, 32), blockDim = 512))

})

By default, copyToDevice() uses cudaMalloc() to allocate the space on the device. cudaMal-
loc() returns an object that points to the allocated memory, but also contains the number and
the type of the elements, if specified. This allows us to retrieve the contents of the memory
on the device. The copyFromDevice() function allows for explicitly copying data from the
device to host. It takes the pointer, the number of elements and the type of each element.
While we can specify these arguments explicitly, in many cases it is more convenient to use
the subset operator

p[]

This utilizes the information stored when we allocated the space and is equivalent to

copyFromDevice(p, p@nels, p@elTypeName)

We can also use the subset syntax to assign values to an existing memory location on the
device. For example,

p[] <- rnorm(N)

copies the the values on the right-hand side to the device memory specified by p[].

In addition to this standard usage it is also worth noting that we can use cudaMalloc() to
allocate space for arbitrary data types since we only need the size of each element. For known
data types such as float or int values, RCUDA knows how to copy data both to and from
the device. For more general data types this can be done by the R programmer using the
functionality provided by RCUDA

When we no longer have an R reference memory on the device (i.e. in an R variable), R
releases the memory using a finalizer routine we register when allocating the space. This
allows R programmers to ignore memory management issues and treat the memory on the
device as a regular R object.

2.2. Contexts

We can call many of the functions in the RCUDA package without having to know about
CUDA context objects. However, they are important for some computations and so we address
them briefly here.
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Most RCUDA functions require an active context. We can explicitly create a default context
using createContext() or we can use cuGetContext() to query the current context and create
one if there is none. When creating a context, we can specify the device with which it is
associated and also specify different flags or options to control how it behaves. These options
are a combination of individual options which we can specify in different ways. We can use
R variables representing the different options, e.g. CU CTX SCHED AUTO and CU CTX -
MAP HOST, and then we can combine them with the | operator. Alternatively, we can use
a vector of names that identify the different options. The following are equivalent

c("SCHED_AUTO", "BLOCKING_SYNC", "MAP_HOST")

c("CU_CTX_SCHED_AUTO", "CU_CTX_BLOCKING_SYNC", "CU_CTX_MAP_HOST")

CU_CTX_SCHED_AUTO | CU_CTX_BLOCKING_SYNC | CU_CTX_MAP_HOST

Note that the first variant avoids the "CU_CTX" prefix. Similarly, there are also functions that
can query and set attributes of a context such as the stack and heap size, shared memory
configuration and cache configuration.

CUDA maintains a stack of contexts (per host thread, of which there is only one in R). When
we create a context, it becomes the active one and is used in subsequent computations. We can
also explicitly push an existing context on to the top of the stack with cuCtxPushCurrent().
We can pop the current context off the top of the stack with cuCtxPopCurrent(). At present,
R users must explicitly release a context with cuCtxtDestroy(). It would be preferable to
release the memory using R’s finalizer mechanism. However, this is, at best, complex because
it is difficult to determine if CUDA is still using the context.

2.3. Querying Devices

The function getNumDevices() tells us the number of devices on the local machine. We can
get the name of a device with cuDeviceGetName(), e.g.

cuDeviceGetName(1L)

[1] "GeForce GT 330M"

We can query the characteristics of a device using the getDeviceProperties() function or
cuDeviceGetAttributes(). The former uses a deprecated routine in the CUDA API, while the
second queries all of the individual attributes. The queryable attributes include the maximum
dimensions of a grid and a block, the maximum number of threads per block and per processor,
the warp size, the number of multi-processors and the shared memory per block. The names
of the entire set of attributes are available via the CUdevice attributeValues variable in the
package. Rather than querying all of the attributes in one call, we can retrieve a single
attribute with cuDeviceGetAttribute(). We specify the attribute using the name or value of
one of the elements in CUdevice attributeValues.

In addition to querying information about a device, we can query the version of the CUDA
SDK with cudaVersion() e.g.,

cudaVersion()
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driver runtime

5000 5000

We can determine the amount of memory a device has with the function cuMemInfo(). Unlike
the other functions for querying a device, cuMemInfo() does not take a device as an argument.
Instead, it uses the device associated with the current context. Thus we must have created
a context before calling this function, either explicitly or implicitly. The function reports the
total memory on the device, the amount free and the proportion free.

2.4. Profiling

The primary reason to use GPUs for scientific computing is usually to improve performance.
Key considerations in the performance of GPU code include the overhead of copying data
between the host and the device, the efficiency of the kernel code and even the dimensions
of the grid and block for controlling the threads. In light of this, it is useful to understand
where the entire code spends time in order to improve the performance by reducing these
bottlenecks. As in R itself, we can profile computations involving the GPU with several
routines in the CUDA API.

We can profile an entire sequence of R expressions with the R function profileCUDA(). This
takes one or more R expressions (enclosed within {} for more than one expression) and returns
the profiling information as a data frame. The following bootstrap example allocates space
and reuses it for each bootstrapped data set, with GPU code used to compute summary
statistics for each sample:

B = 100

prof = profileCUDA( {

p = copyToDevice(x)

replicate(B, {

p[] = sample(x, N, replace = TRUE)

.cuda(kernel, p, N, mean, sd, outputs = 1,

gridDim = c(62, 32), blockDim = 512)

})

})

This returns a data frame with one row for each line of output generated by the CUDA
profiler. Each row corresponds to a particular CUDA routine, kernel routine or routine called
by the kernel. There are typically multiple rows for the same routine corresponding to when
the routine was observed by the profiler. The columns of the data frame correspond to the
“counters” we specified for the profiler to record. We specify this via a configuration file the
profiler reads when it is instantiated. The RCUDA package provides a default configuration
file and uses that if the caller does not specify one. We can use a different configuration file
either by explicitly passing a file name in the call to profileCUDA() via the config parameter,
or globally via the R option “CUDAProfilerConfig”.

Rather than profiling an entire collection of R expressions as a single unit, we can create
a profiler and start and stop it at different times to collect information about particular R
expressions. The cudaProfiler() function creates the profiler, and optionally starts it. We
specify the name of a file to which the profiler writes the information, and we can select
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either of two formats - CSV or name=value pairs. We start and stop the profiler with
cudaStartProfiler() and cudaStopProfiler(). We can read the CSV output from the profiler
with readCUDAProfile(). Note that profileCUDA() is merely a wrapper that uses all of these
functions.

The summary() method for the result of profileCUDA() and readCUDAProfile() aggregates
the rows in the data frame for each routine and gives the total counts for each as a new data
frame.

2.5. Memory Management

As discussed in section 2, the RCUDA package provides both high- and low-level functionality
to transfer data between the host and the GPU device. In this section we describe some of
the richer memory management functionality offered by the package. As may be expected,
the low-level functionality mirrors the CUDA API with the ability to allocate memory on the
device in several different ways, copy memory between the host and device, and to release
the memory. These include cudaMalloc() and cudaMallocPitch() for allocating memory and
cudaMemcpy() for copying the contents of memory between the two devices. cuMemFree()
releases the memory. We can use these primitives directly or alternatively we can use higher-
level functionality provided by the package.

In a call to .gpu() (or .cuda()), any R vector with more than one element is automatically
transferred from R to the GPU. By default, after the kernel execution has completed, the
contents of this memory on the GPU are then transferred back to R and returned by the
.gpu() call. The memory is then automatically released. This is done via a finalizer on the
external pointer. Typically if a vector argument does not contain any useful output data from
the kernel then we would not want .gpu() to spend time transfering its contents back from
the GPU. Fortunately we can avoid this by specifying which arguments are to be considered
outputs from the kernel via the outputs paramater of .gpu().

As discussed in section 2, rather than have .gpu() implicitly transfer data to the device, we can
also explicitly control the transfer of data from R to the GPU with copyToDevice(). Manually
copying data from host to device is often preferable if we are applying one or more kernels
to different R vectors or matrices with the same number of elements. The copyToDevice()
function returns an object that is an instance of the class cudaPtrWithLength(). These
objects have the address of the memory on the GPU in which the data are stored. However,
they also contain the number of elements and the size of each element on the GPU. This
allows us to retrieve all of the values in the array from the GPU as the object is fully self-
describing (unlike a simple pointer). We can use the simple empty-subsetting operator to
copy the contents from the GPU back to R. For example, the following shows how to copy an
R vector to the GPU and retrieve it:

x = rnorm(1e6)

ptr = copyToDevice(x)

ptr[]

The final expression retrieves the collections values from the GPU as into a new R vector,
separate from the original vector in x. We can also a subset of the elements in the usual
manner, e.g.
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ptr[1:10]

ptr[which(x) > 0 ]

ptr[ - c(11:1e6)]

We can explicitly free memory we allocate on the GPU with cudaMalloc() via the function
cuMemFree(). However, R will also do this for us via the usual garbage collection. When an R
object referencing memory on the GPU is deleted, the finalizer routine calls cuMemFree() for
us. We have to remember to remove such variables when we no longer need them as otherwise
the memory will not be released. We also have to wait until the R garbage collector is invoked
for the GPU memory to actually be freed. This is why the .gpu() function explicitly calls gc(),
by default. If it did not, it is possible that memory on the GPU used from a previous call to
.gpu() would still appear to be in use and so not released. This could have lead to situations
where there was insufficient memory on the GPU to perform this new call to .gpu(), when in
practice we could have used the memory from the previous call.

In addition to the cudaMalloc() function, there are other functions available for memory
allocation and data transfer to/from the GPU such as cudaMallocPitch(), cudaMemcpy2D()
and cudaMemcpy3D() which allow for the transfer of 2-dimensional and 3-dimensional arrays.
Further discussion of some aspects of this functionality is provided in 3.3.

2.6. Asynchronous execution

A typical mode of using the GPU is to launch a kernel and wait for it to complete and
then return the results to the R calling command. We can, however, launch the kernel
asynchronously. This allows us to dispatch one or more tasks to the GPU while we continue
to perform tasks in the R session. This allows us to truly use the GPU as a co-processor.

There are several ways to excute tasks asynchronously. The simplest is, perhaps, to use the
.async parameter in the .gpu() function. If this is TRUE, the .gpu() function launches the
kernel and does not wait for it it to complete. It returns the references to memory on the
GPU device for any objects it copied to the GPU. At this point, we can evaluate other R
expressions while the GPU is processing the kernel threads. To obtain the results from the
kernel, we can simply copy the values from the GPU memory. Copying the memory from
the device will cause CUDA to synchronize with the GPU. Alternatively, we can explicitly
synchronize with the GPU by calling cudaDeviceSynchronize() or cuCtxSynchronize().

A different approach than using .async() is to use streams. We can think of a stream as
managing a collection of tasks. A task can be an invocation of a kernel or copying data to or
from the GPU. We can add a kernel invocation to a stream by passing the stream object to
the .gpu() function. We first create the stream with

stream = cudaStreamCreate()

We then launch a kernel with

out = .gpu(mod$kernel, ..., stream = stream)

By default, the presence of the stream argument will cause .async to be TRUEand .gpu()
will return without waiting for the kernel to complete.
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We can queue multiple kernel invocations on the same stream via repeated calls to .gpu().
The GPU can interleave and schedule the threads across these kernels in a way that improves
the overall performance relative to serial scheduling.

We can also add requests to a stream to copy memory to or from the GPU. For example,
the cudaMemcpyAsync() accepts a stream argument, as do any of the Async variants of the
memory copying functions.

While we can synchronize on the device or context, we can also use more fine-grained syn-
chronization using a stream. The cudaStreamSynchronize() function will wait in R until the
entire collection of tasks in the stream have completed. Rather than blocking until the tasks
are complete, we can use cudaStreamQuery() to query whether the stream’s task are all fin-
ished. This allows us to periodically “check in” with stream without actually waiting for it to
complete.

2.7. Other Routines in the API

For the most part, there is a corresponding R function for each routine in the CUDA SDK that
can run on the host. At present we have not created bindings to the routines associated with
textures and surfaces. However, should these prove useful for the community, these bindings
can be generated in a similar manner.

3. Examples/case-Studies and performance

In this section, we look at several examples and see how they perform on various GPUs. The
first example is a simple scalar version of the normal density function and we compare this with
the highly efficient dnorm() function in base R. We also look at a similar example involving
importance sampling. This is similar as it maps an element-wise vectorized operation in R to
element-wise threads on a GPU. We then look at computing distances on a GPU by addapting
code in the gputools package. This illustrates how we can use an existing kernel and invoke
it from R without the supporting C code to interface from R.

3.1. Computing the Normal density

Performance in R puts a great premium on vectorized operations. Since most of the primitives
are vectorized, expressions that use these primitives are also vectorized. Since these primitives
are vectorized in C code, they are fast. Some of them also use multiple processors when the
vectors are sufficiently large and there are additional available CPUs.

Element-wise vector operations in R map naturally to GPUs. We perform the same compu-
tation on each element of the vector in a separate thread on the GPU. We define a kernel to
operate on an individual element and then we can apply that to each element of the vector.

Consider the function dnorm() in R. It computes the value for a Normal density a vector of
values, e.g.

N = 1e6L

x = rnorm(N)

d = dnorm(x, mu, sigma)
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We can define a similar kernel routine to compute the density for a single observation. The
code will look similar to the following:

extern "C"

__global__ void

dnorm_kernel(float *vals, int N, float mu, float sigma)

{

int myblock = blockIdx.x + blockIdx.y * gridDim.x;

int blocksize = blockDim.x * blockDim.y * blockDim.z;

int subthread = threadIdx.z*(blockDim.x * blockDim.y) +

threadIdx.y*blockDim.x + threadIdx.x;

int idx = myblock * blocksize + subthread;

float pi = 3.141592653589793;

if(idx < N) {

float std = (vals[idx] - mu)/sigma;

float e = exp( - 0.5 * std * std);

vals[idx] = e / ( sigma * sqrt(2 * pi));

}

}

The initial expressions determine on which element of the vector this particular thread should
operate. It does this by computing its unique identifier in the grid of blocks of threads. Once
it has computed the index of the element, it verifies that this is not a redundant thread but
is operating on a value within the extent of the vector. Then it computes the result.

In our kernel, we have passed the vector of values via the first parameter. We have arranged
for the kernels to write their results back into this vector since we don’t expect to reuse this
veector on the device. This removes the need to have two related vectors for the inputs and
outputs in memory on the device simultaneously.

We compile this code, either on the command line outside of R or with

ptx = nvcc('dnorm.cu')

We can then load the resulting PTX file with

mod = loadModule(ptx)

Now that we have the kernel, we can obtain a reference to the kernel with

k = mod$dnorm_kernel

We can now apply this kernel to our vector above with

ans = .gpu(k, x, N, mu, sigma, gridBy = N)

The .gpu() function recognizes which arguments are local vectors (not scalars) and, by default,
returns the updated contents of these vector arguments. Therefore, this call to .gpu() returns
the new contents of x.
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Note that N has to be an integer. If it is not, we must coerce it to an integer in the call or
before. The types of each argument must match the corresponding type of the kernel.

We also created a kernel that does not overwrite its inputs. This has the signature

void dnorm_kernel(float *vals, int N, float mu, float sigma, float *out)

where the out is the vector into which each kernel instance stores its result. We would invoke
this in a similar manner as the previous kernel, but here we have to pass this extra argument.
We can just allocate this output vector with a call to numeric() and pass it in the call to
.gpu. The command

ans = .gpu(k, x, N, mu, sigma, out = numeric(N), gridBy = N)

returns the update values of both vectors in the call, i.e. x and out. This involves more
computation and memory than is necessary. We don’t need the contents of x. We use the
outputs parameter to specify which vectors to explicitly transfer. We can use the name of
the argument or its position (in the collection of kernel arguments). For example, to return
only the vector associated with the variable named out, we use

ans = .gpu(k, x, N, mu, sigma, out = numeric(N),

outputs = 'out', gridBy = N)

Note that this is different from

ans = .gpu(k, x, N, mu, sigma, out = numeric(N),

gridBy = N)$out

as we might use in R’s .C() interface. The reason this is different is that .gpu() will transfer
and return both x and out and then we are extracting only the out element. By explicitly
specifying which objects to transfer in the call to .gpu(), we avoid the overhead.

TODO: Do we want timings here? If we don’t then I think we need to say we
don’t provide them. . .

3.2. Importance Sampling

Importance sampling is a standard approach that allows for the numerical approximation of
expected values that cannot be computed directly. Suppose we want to compute Ef [h(X)]
where f denotes the probability density (or mass) function of the random variable X i.e.,

Ef [h(X)] =

∫
h(x)f(x)dx. (1)

If we are able to sample independent random variates x1, . . . , xn from f then we can approx-
imate the expectation in (1) in a straightforward manner using:

Ef [h(X)] =
1

n

n∑
i=1

h(xi). (2)
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Now suppose it is difficult or computationally intensive to sample from the density f . Instead,
we can sample x1, . . . , xn from another density g with the same support as f . By a simple
importance weighting scheme we can modify the approximation in (2) to obtain

Ef [h(X)] =
1

n

n∑
i=1

w(xi)h(xi), (3)

where w(xi) = f(xi)/g(xi) is the importance weight given to xi.

We now apply this technique to a simple example from Mathew Shum (www.hss.caltech.
edu/~mshum/gradio/simulation.pdf). Suppose we want to compute the expectation of a
truncated standard Normal with support [0, 1]. Note that the density of the truncated Normal
is

f(x) =
φ(x)∫ 1
0 φ(x)

dx

where φ(x) is the standard normal density. Instead of sampling from f(x), we instead sample
N variates from a standard Uniform i.e., we select g(x) = 1{0<x<1}. Since g(x) = 1 the
importance weights in (3) can just be seen to be w(xi) = φ(xi)/.34134. This can be easily
implemented in R using

N = 1e6

x = runif(N)

mean(x * dnorm(x)/.34134)

Like the dnorm() example, we could also implement this vectorized computation in R as a
computation on a GPU with each thread calculating xiw(xi).

extern "C"

__global__ void truncNorm(float *out, float *unifVals, int N)

{

int myblock = blockIdx.x + blockIdx.y * gridDim.x;

/* how big is each block within a grid */

int blocksize = blockDim.x * blockDim.y * blockDim.z;

/* get thread within a block */

int subthread = threadIdx.z*(blockDim.x * blockDim.y) +

threadIdx.y*blockDim.x + threadIdx.x;

float phi0_1 = 0.3413447460685;

int idx = myblock * blocksize + subthread;

if(idx < N) {

out[idx] = unifVals[idx] * dnorm(unifVals[idx], 0, 1)/phi_0_1;

}

}

As is typical with a GPU kernel, the code determines which part of the data this particular
instance of the kernel is to work on. It does this using its threadIdx and blockIdx and the
grid and block dimensions. The actual computations are very simple

out[idx] = unifVals[idx] * dnorm(unifVals[idx], 0, 1)/phi_0_1;

www.hss.caltech.edu/~mshum/gradio/simulation.pdf
www.hss.caltech.edu/~mshum/gradio/simulation.pdf
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N Quadro 600 Tesla K20
1e6 1.16
1e7 1.61

Table 1: Speedup for simple importance sample. These are relative speedups of the
GPU implementation relative to the vectorized R implementation. The Quadro 600 GPU has
1 gigabyte of RAM and is more of a graphics card than a GPGPU. The Tesla K20 has 5
gigabytes of RAM and is one of the top-of-the-line GPUs at present.

We omit the code for the dnorm() routine since it is very similar to that in the previous
example. Full code is available at http://www.omegahat.org/RCUDA/importanceSample.cu,
along with some additional kernels.

We compile this code and load it with

nvcc('importanceSampling.cu')
mod = loadModule('importanceSampling.ptx')
u = runif(N)

z = .gpu(mod$truncNorm, numeric(N), u, as.integer(N),

gridDim = c(64, 32), blockDim = 512, outputs = 1L)

Here we have determined that we can run 512 threads in each block and so determine that
we need ceiling(N/512) blocks to compute all N values.

Do we gain much from using the GPU in this circumstance? We have had to write the
kernel in C and compile it. Undoubtedly, this is more complicated than the R code above
and involves debugging, etc. What we do get is the parallelism. Table 1 shows timings on
different GPUs for different length vectors.

We note that we have elected to compute the random values from the uniform density in
R and explicitly pass these to the kernel. Alternatively, we could use the CUDA random
number generators. This avoids transferring data from R to the GPU memory. It also allows
us to compute these values in parallel. Examples involving the generation of random numbers
on the GPU using the CURAND library (NVIDIA corp) are also available in the examples

directory of RCUDA.

3.3. Computing distances

In this final example, we will explore how to compute distances on the GPU. Since the gputools
package already does this, we here consider how to use the kernels provided by that package
within the RCUDA framework. Our aim is to contrast how interaction with the GPU is done
with R bindings to CUDA and how it is done with C code.

The gpuDist() function in the gputools package is similar to R’s own dist() function. It takes
a matrix of observations and the name of a distance metric. For ease of computation in
the C code, the function transposes the matrix so that the elements of each observation are
contiguous in memory (i.e. in row order rather than column order). gpuDist() calls a C routine
Rdistances(). This is a simple wrapper that calls the routine distance(). This routine copies
the data from the host to the device, allocating the space for the input and the output arrays.
It then calls distance device() which launches the kernel. Which kernel is used depends on
which distance metric is to be used. So distance device() contains the same code for each

http://www.omegahat.org/RCUDA/importanceSample.cu
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kernel. It is here that a kernel thread is launched for each pair of observations and the GPU
is actually involved in the computations.

We can invoke any of the kernels in the gputools packages directly from R and so remove the
need for the C routines described above. This not only greatly simplifies the understanding
and development of the code, but also leads to more flexible, reusable code. We now illustrate
how to call the euclidean kernel same() kernel. We start by extracting it from the C code and
compiling it directly into PTX code (or cubin or fatbin format). We then load this into the R
session with loadModule(). This kernel expects a single matrix, say stored in AB. Mimicing
the C code in gputools, we pass the same matrix as two different parameters. (This is related
to a different kernel we will discuss below.) Since we are passing it twice, we can transfer it
just once to the GPU memory and then pass a reference to that one instance of the data in
two places. This avoids making two copies of the data. As a result, we copy the data to the
device before calling .gpu() with

ABref = copyToDevice(t(AB))

Note that we have transposed the matrix as the kernel expects the elements of each observation
to be contiguous. This contrasts with R’s column-oriented representation of a matrix.

Having loaded the module and extracted the function, we can now launch the kernel. We pass
the reference to the matrix values (ABref ) and also the stride/pitch between observations (the
number of columns in the matrix) and the number of observations. Note that we pass these
twice, even though the second set of parameters is not used in the kernel. We also pass space
to insert the distances. This is an n×n matrix (where n is the number of rows in AB) and we
can pass a simple numeric vector with the correct number of elements for this. We’ll convert
it to a matrix after the kernel completes. We also need to specify the stride/pitch for this
matrix which is nrow(AB), i.e. the number of columns in the distance matrix.

d = .gpu(kernel,

ABref, ncol(AB), nrow(AB), # inputs & dimensions

ABref, ncol(AB), nrow(AB), # inputs again

ncol(AB), # dimension of matrix

dist = numeric(nrow(AB)^2), nrow(AB), # results

2.0, # ignored

outputs = "dist", # which arguments to copy back

gridDim = c(nrow(AB), nrow(AB)), # square grid

blockDim = 32L) # threads within block

The final three arguments in this call to .gpu() are for controlling .gpu() rather than being
passed to the kernel. outputs identifies which inputs(s) are to be copied back as part of the
result. These are the out variables of the kernel. In our case, we only want the distances
which we have explicitly named dist. We run a separate block of threads for each pair of
observations. To do this, we specify a grid dimension of c(nrow(AB), nrow(AB)). The kernel
uses 32 threads to compute the squared differences of the elements in the pair of observations
and add them together. This number is hard-coded in the kernel in order to use shared
memory between the cooperating threads. Therefore, we use a block dimension of 32.

Once the call to .gpu() returns, the variable d contains the vector of all pairwise distances.
These distances are converted to a matrix to produce the desired result. Once completed,
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we should ideally remove the variable ABref so that the garbage collector can release the
associated memory on the GPU device.

Note that since the second set of inputs are not actually used in this kerne, we could also
specify NULL for the matrix of values and any integer values. .gpu() transfers the R value to the
kernel as the C value NULL. Ideally, the code should be changed to remove the parameters
that are not used. However, this happens when the code itself is complex to develop and
maintain and we don’t want to modify it once it is working. This is an argument for writing
in a high-level language such as R and RCUDA.

3.4. Different approaches to allocating memory

One of the goals of writing the RCUDA package is to allow R programmers to explore and
experiment with the entire CUDA API. Writing C code for all aspects of copying data between
the host and device and launching kernels is time-consuming and error-prone. It makes one
less likely to experiment with different approaches to enhance performance. However, if we
can perform experiments directly in R code, we are more likely to take the time to understand
what idioms work best in different circumstances.

One example of using a different idiom arises in the gputools package. Rather than just
directly copying the matrix of values from R to the GPU’s memory, the C code uses cud-
aMallocPitch() and cudaMemcpy2D() to transfer the data. This has a potential benefit of
padding out the rows of the matrix so that they are aligned in a way that makes the GPU
more efficient. The GPU can then load different blocks of memory in a more efficient manner.

We can change our implementation to see if this does yield improved performance. We can
replace the call

ABref = copyToDevice(t(AB))

in our initial example with an explict call to cudaMallocPitch() and cudaMemcpy2D(). We
do this with

mem = cudaMallocPitch( ncol(AB) * 4L, nrow(AB))

cudaMemcpy2D(mem$devPtr, mem$pitch,

convertToPtr(t(AB), 'float'),
ncol(AB)*4L, ncol(AB)*4L, nrow(AB),

RCUDA:::cudaMemcpyHostToDevice)

Note that we explicitly convert the (transposed) matrix to a C-level array of float elements.

We had to explicitly create this array as the memory we allocated has no information about
the type. The RCUDA package provides a higher-level interface for this, built on these SDK
bindings. We can use mallocPitch() (without the cuda prefix) and specify the type of element
with

mem = mallocPitch( ncol(AB), nrow(AB), "float")

With this function, we specify the number of elements and not the number of bytes in the first
argument. Furthermore, the resulting object returned by mallocPitch(), of class PitchMem-
ory2D, contains information about the location of the allocated memory, its size and type of
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element. This allows us to simply assign an R object to it and have the assignment actually
convert the R object and copy it to the GPU’s memory. So we can use

mem[] = t(AB)

to copy the matrix to the GPU.

3.5. Distances between two matrices

For certain statistical applications it is useful to compute the distance between each observa-
tion of two matrices, say A and B. Given the existing distance function code one way to do
this is to combine the two matrices into a single matrix and compute all pairwise-distances
between the rows. While simple to implement, such an approach is clearly sub-optimal. First,
this approach uses much more memory by creating a new matrix. It also performs a large
number of redundant computations that will be ignored, namely the distances between each
pair of rows in A and also in B where we only want those for the observations between A and
B.

To avoid these inefficiencies, the gputools package contains a kernel that can handle two
different matrices as inputs. This is called euclidean kernel() (i.e. without the same() suffix.)
We can invoke this with

out = .gpu(mod$euclidean_kernel,

t(A), ncol(A), nrow(A),

t(B), ncol(B), nrow(B),

ncol(A),

ans = numeric(nrow(A) * nrow(B)), nrow(A),

outputs = "ans",

gridDim = c(nrow(A), nrow(B)),

blockDim = 32L)

The arguments are very similar to the previous kernel call, but there are no ignored parame-
ters.

Note that here we pass the two matrices directly in the call to .gpu(), rather than than copying
them to the device ahead of the call. This is because we are not passing the same matrix as
two separate inputs. Instead, we can leave it to the .gpu() function to copy the vectors to
the device, pass the references to each of them to the kernel, and then to release the memory
after it is no longer used.

Passing the two matrices separately rather than stacking them into one single matrix avoids
unnecessary overhead in R before invoking the GPU kernel. Ignoring this overhead, this form
of the computation that avoids the redundant computations of within-matrix distances runs 3
times faster for a pair of 10, 000 and 5000 matrices than the GPU version of the computation
involving stacking.

3.6. A different metric

With the flexibility provided by the RCUDA package it is straightforward to use different
distance metrics. To do so, we can simply load a different kernel and pass that to our
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function. For example, we can use the canberra kernel() in the gputools code. We can access
it with

mod$canberra_kernel

and then pass that to the call to .gpu() function above without changing any of the other
arguments. In this way, the kernel acts like a function or a pointer to a routine in C and
allows us to parameterize the same distance calculations. This makes the code simpler, as we
would expect of a high-level implementation. It also makes it more flexible. If we want to
use an entirely different kernel, we can write just the code for that kernel, compile and load
it. Our distance function does not need to know where the kernel came from or have any a
priori knowledge about it.

3.7. Reusing the computed distances

As we have seen before, it is sometimes useful to be able to leave the results computed by one
kernel on the device and have those be used as inputs to a second kernel. The gputools package
does this when performing hierarhical clustering. Starting with a collection of observations
(i.e. a data frame or matrix), we calculate the pair-wise distances between all observations.
Then we pass these to the gpuHclust() function to compute the clusters. If we just use
gpuDist() and then gpuHclust(), we wil have moved the distances from the GPU device back
to R, and then copy them back to the device. gputools provides gpuDistClust() to avoid
this unnecessary overhead. This is implemented with a separate, but very similar, routine to
distance(). Again, this allocates and copies the inputs on the GPU. So there is a separate R
function and a separate C routine to implement this, adding to the complexity.

We can also avoid the overhead in RCUDA using code of the form:

distances = cudaMalloc(N["A"] * N["B"], elType = "numeric")

.gpu(mod$euclidean_kernel_same, .., distances, outputs = FALSE)

.gpu(mod$centroid_kernel, distances, ...)

Here, we allocate the memory on the GPU for holding the computed distances. We tell .gpu()
not to return it to R. At this point, the distances will be in this memory. We then pass the
reference to that memory on the device as the input to the next kernel. This reduces the
complexity and also allows the R programmer to combine the kernels in different ways than
the original developers planned.

4. Low-level interface and its implementation

We initially implemented the bindings to copy data between the host (CPU) and device
(GPU) and the ability to launch a kernel to verify that this approach would work and to deal
with the marshalling of R objects to the kernel calls and vice-versa. We also added some
additional bindings to query the available GPUs and their properties. Subsequently, however,
we programmatically generated the binding (R and C) code and the enumerated constants
and information about the data structures (e.g. the size of each so we can use that when
allocating memory on the device).
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Next, we describe a reasonably simple example of a programmatically generated binding to
illustrate the nature of the interface and to help mapping from the CUDA documentation to
the R functions. One function is cuDeviceGetAttribute() and corresponds to the routine with
the same name in the CUDA API. The routine is defined in the header file cuda.h as

CUresult CUDAAPI

cuDeviceGetAttribute(int *pi, CUdevice_attribute attrib, CUdevice dev);

The second parameter identifies which attribute we are querying and the third parameter
identifies the device. The latter is an integer, with 0 corresponding to the first device, 1 for
the second and so on. The first parameter is a pointer to a single integer. This is how the
CUDA API returns the result of the query. This is an output variable. Accordingly, we do
not need to include in the R function that calls the C routine.

The CUDA routine returns a status value of type CUresult. We check this to see if the call
was successful. If it was, we return the result stored in pi ; otherwise, we raise an error in R,
using the particular value of the status type and the CUDA error message.

The R function we generate to interface to the CUDA routine is defined as

cuDeviceGetAttribute <-

function( attrib , dev )

{

ans = .Call('R_auto_cuDeviceGetAttribute',
as(attrib, 'CUdevice_attribute'),
as(dev, 'CUdevice'))

if(is(ans, 'CUresult') && ans != 0)

raiseError(ans, 'R_auto_cuDeviceGetAttribute')
ans

}

This makes the call to the wrapper routine R auto cuDeviceGetAttribute(), passing it the two
R values identifying the attribute and device of interest. An important step here is that this R
function coerces the arguments it receives to the correct types. Here we have an opportunity
to use 1-based counting familiar to R users for specifying the device. The coercion from the
device number to a CUdevice object in R performs the subtraction to map to the 0-based
couting used by CUDA. We manually defined the CUdevice class and the coercion method.

The function checks the status of the result to see if it is an R object of class CUresult. If it
is and not 0, the call produced an error and we raise this in R. By doing this in R rather than
in C code, it is easier to raise exceptions/conditions with classes corresponding to the type of
error. This allows programmers to react to particular types of errors, e.g. out of memory or
invalid device, in different ways.

The final piece of the bindings is the C wrapper routine R auto cuDeviceGetAttribute(). This
is defined as

SEXP

R_auto_cuDeviceGetAttribute(SEXP r_attrib, SEXP r_dev)

{

SEXP r_ans = R_NilValue;
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int pi;

CUdevice_attribute attrib = (CUdevice_attribute) INTEGER(r_attrib)[0];

CUdevice dev = INTEGER(r_dev)[0];

CUresult ans;

ans = cuDeviceGetAttribute(& pi, attrib, dev);

if(ans)

return(R_cudaErrorInfo(ans));

r_ans = ScalarInteger(pi) ;

return(r_ans);

}

The logic is quite straightforward and very similar to how we would write this manually. We
convert the R-level arguments to their equivalent C types. We create a local variable (pi) used
to retrieve the actual result. We call the CUDA routine and check the status value. If there
is an error, we call a manually written routine R cudaErrorInfo() which collects information
about the CUDA error in the form of an R object. If the CUDA call was successful, we return
the value of the local variable pi converted to the approriate R type.

We used RCIndex Temple Lang (2010-) to both read the declarations in the CUDA header
files and to generate the bindings. Programmatically generating the bindings reduces the
number of simple programming errors and also allows us to update the bindings when new
versions of the API and SDK are released.

The CUDA API uses an idiom for most of its routines. A routine returns an error status value,
and if this indicates success, the actual results are accessible via the pointers we passed to the
routine. In other words, the routines return their values via input pointers. We specialized
the general binding generation mechanism in RCIndex to exploit this idiom and be able to
understand what was essentially an output parameter passed as a pointer input and what
were actual pointer input parameters. This code to generate the CUDA-specific bindings is
included in the package.

We also generated some of the documentation for the R functions programmatically. The
CUDA header files have documentation in comments directly before each routine and data
structure. We used RCIndex to extract these comments and then process the different parts
describing the purpose of the routine, its parameters and return value.

5. Compiling R code to native GPU code

In this section we describe experimental work designed to allow programmers to utilize the
power of the GPU without ever needing to leave R i.e., to allow the creation of CUDA kernels
directly from R code. The approach to achieve this is to use LLVM (Low Level Virtual
Machine), a compiler toolkit that can be embedded within R. This allows us to dynamically
generate machine code within an R session and invoke those newly created routines, passing
them inputs from R and obtaining the results in R. This simple approach is very powerful
and allows us to “compile around the R interpreter” and gain significant speedups for some
common R idioms Temple Lang (2013).

LLVM can generate machine code for the machine’s CPU, but can also create PTX code to
run on an NVIDIA GPU. We can use our R compiler code (RLLVMCompile), or a specialized
version of it for targetting GPUs, and have it generate PTX code for kernel routines. We
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can then load these routines onto the GPU and invoke them as a regular kernels. This was
done using R as an example by researchers in NVIDIA Grover and Lin (2012) investigating
dynamic, interpreted languages and GPUs.

6. Future Work

Now that we have the general-purpose bindings and access to the CUDA API, we, and hope-
fully others, will explore how to map commonly used statistical algorithms onto the GPU to
take advantage of their potential. We plan to explore different examples and approaches and
understand their characteristics in the context of GPU applications.

We also plan to explore the potential benefits of aspects of the API not addressed in this
paper such as pinned memory, streams for interleaving computations and peer-to-peer com-
munication between two or more GPUs.

As the need arises, we may generate bindings to other GPU-related libraries and APIs. It is
useful to note though that there is no need to have R bindings to interface with kernel-level
libraries such as Thrust Hoberock and Bell (2010) and parts of curand NVIDIA corp as these
can be accessed in the usual manner when implementing the kernel. While this handles many
such uses, however, we may need to determine the sizes of the different data structures they
use that should be allocated by the host on the device (see curand examples in the RCUDA
documentation for more details).
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