A Guide to Implementing an
R Graphics Device with the
RGraphicsDevice package

Table of Contents

10T U Tox £ o o U 1

Initialization VIa INITDEVICEcoi e e e e e e e s e e e e e e e e e nnees 4

L= 1 10 = RSP 4

Drawing on the JaVaSCript CanVESeeiiiiaiiiiiiiiiiiee e e e e e e e e e et e e e e e e e e e s ennneaeeeeaaeeeens 4

Displaying the JAVASCIIPLcoiei i e e e e e e e e as 7

The R_GE_(CONEXE ClASSESuvuvuiiiiiiiiiiiiiiruiuinrerurnrnennnrennenenrnenrarrrnrnnn—————. 8

YV = o= USSP PRERT 10

I (SR =30 o= = 1 o o OSSR 10

FULUNE DITECHIONS ieeeiiieiie e ettt ettt e e e e e e ettt et e e e e e s e e ettt e e e e e e e e s e s neaeneeeeaeeesaannnnnneeeeaens 10
Introduction

The idea is that we provide this package so that others can write new graphics devices entirely in R. An
R programmer might create an SVG or Flash graphics device by writing R functions that implement the
different graphical primitive operations needed by an R graphics device.

To create a running graphics device with our own functions, we call the gr aphi csDevi ce() function.
While there are several methods for this, essentially we give it alist of named functions that specify the
implementation of some or all of the 21 graphical primitive operations. We might give thisasalist or as
an instance of or of asub-classthat we define for a particular type of device. So we
focus on writing these functions.

The names of the functions can be found with

[1] "activate" "circle" "clip" "cl ose"
[5] "deactivate" "l ocator" "lI'ine" "metriclnfo"
[9] "node" "newPage" "pol ygon" "pol yli ne"
[13] "rect" "size" "strWdth" "text"
[17] "onExit" "get Event " "newFr aneConfirm "text UTF8"

[21] "strW dt hUTF8"

Almost every graphics device will need to implement circle, line, rect, polygon, polyline, text and strWidth.
For non-interactive graphics devices, e.g. those creating files that are displayed in a separate step, we don't
need to implement locator, activate, deactivate, mode, getEvent. onEXxit is also probably not necessary but
can be of valuefor recovering from errorsin evaluating code that produces graphics. If we can handle UTF8
encoded strings, we can implement textUTF8 and strWidthUTF8, but this is not imperative. metricinfo
allows the device to return information about the size of a character. A device does not have to provide
thisinformation.

http://www.omegahat.org/RGraphicsDevice

A Guide to Implementing an R Graphics Device with the RGraphicsDevice package

So now we must implement each of the important functions needed by our new device. To do this, we need
the signatures, i.e. the number and the type of the argumentsthey will be passed when the R graphics engine
invokes these. These are given in the following with the name of the method and the comma-separate list
of the R types of the parameters, and the number of parameters on the right:

Table 1. Signatures of the device operations

signature # pa-
rameters
activate (DevDescPtr) 1

circle (numeric, numeric, numeric, R_GE_gcontextPtr, DevDescPtr)

clip (numeric, numeric, numeric, numeric, DevDescPtr)

close (DevDescPtr)

deactivate (DevDescPtr)

getEvent (ANY, character)

line (numeric, numeric, numeric, numeric, R_GE_gcontextPtr, DevDescPtr)

locator (numeric, numeric, DevDescPtr)

metriclnfo (integer, R_GE_gcontextPtr, numeric, numeric, numeric, DevDescPtr)

mode (integer, DevDescPtr)

newFrameConfirm (DevDescPtr)

newPage (R_GE_gcontextPtr, DevDescPtr)

onExit (DevDescPtr)

polygon (integer, doublePtr, doublePtr, R_GE_gcontextPtr, DevDescPtr)
polyline (integer, doublePtr, doublePtr, R_GE_gcontextPtr, DevDescPtr)

rect (numeric, numeric, numeric, numeric, R_GE_gcontextPtr, DevDescPtr)

size (doublePtr, doublePtr, doublePtr, doublePtr, DevDescPtr)

strWidth (character, R_GE_gcontextPtr, DevDescPtr)

strWidthUTFS8 (character, R_GE_gcontextPtr, DevDescPtr)

text (numeric, numeric, character, numeric, numeric, R_GE_gcontextPtr, DevDescPtr)

NN W W a0 RPN EFPIN O W OIN| | OO

textUTF8 (numeric, numeric, character, numeric, numeric, R_GE_gcontextPtr, DevDescPtr)

The choice of parameter namesis entirely up to you.

The next topic we need to discussis the set of classes that are new to R programmers and provided as part
of this package. These are , , . The class used in
get Event () meanswhat it says, i.e. any R object.

Each of the methodsis passed an object of class . Thisisaso thetype of the valuereturned by
the top-level function gr aphi csDevi ce() . Thisis areference the C-level data structure that represents
the graphics device. We can use this to query the settings of the graphics device. Some of these fieldsin
the device are used when initializing the device rather than within the functions (e.g. those whose names
are prefixed with "start"). Other fields are structural information about the rendering of different aspects

A Guide to Implementing an R Graphics Device with the RGraphicsDevice package

of the device. For example, we can find the dimensions of the drawing area, The classis
essentially an opague data type in R (containing an external pointer to the C-level data structure) and is
intended to be used asiif it were an R-level list. We can use the $() operator to access individual fields and
we can find the names of these fieldswith nanes() . These are

[1] "left" “right"

[3] "bottont "t op"

[5] "clipLeft" "clipRight"

[7] "clipBottont "clipTop"

[9] "xCharOifset" "yChar O f set "
[11] "yLi neBi as" "ipr"
[13] "cra" "ganma"
[15] "cand i p” " canChangeGanma"
[17] "canHAdj" "startps"
[19] "startcol " "startfill"
[21] "startlty" "startfont"
[23] "startgamm” "devi ceSpeci fic"
[25] "displ ayLi st On" "canGenMouseDown"
[27] "canGenMouseMve" "canGenMuseUp"
[29] "canGenKeybd" "gettingEvent"
[31] "hasText UTF8" "want Synbol UTF8"

[33] "useRot at edText | nCont our "

Under some rare circumstances, it is convenient to convert the reference to an R object. We can do this
by coercing it to the corresponding R class named (i.e. with the "Ptr" remove), i.e. as(dev,
" DevDesc") . Thiscopieseach of thefieldsin the C-level structureto the corresponding slotintheR class.

The second of these classesis . Thisis another reference to an instance of a C-level
datatype. Thisisthe information about the "current” settings of the device. This gives usinformation about
the current pen/foreground color, the background color, the setting for the gammalevel, thelinewidth, style,
join, the character point size and expansion/magnification, and the font information. The availablefieldsare

nanes(new("R_GE_gcontextPtr"))

[1] "col" “fillr "gamma" "1 wd" "lty"
[6] "lend" "ljoin" "Imtre" "cex" " ps"
[11] "lineheight" "fontface" "fontfam|ly"

These are the values that your graphics device must reflect when it renders the display. These control the
colors, line characteristics and fonts.

Many of thesefields are scalar values. | end and | | oi n are special types that are enumeration constants.
These identify particular types of line endingsand linejoins. f ont f am | y isacharacter vector with 201
individual characters.

The one other class of parameter is . Thisis asimple reference to an R numeric vector. The
only thing that is needed to convert this to a numeric vector isthe number of elements. In the two methods
(pol yl i ne() and pol ygon()), we are given the length of the vector in the first parameter. This allows
us to convert these referencesto R numeric vectorsas X[1 : n] wheren isthelength of the vector.

So now that we know about the types in the functions, we can start to define the methods for a particular
type of graphics device. We'll focus on what these functions might do later. But first we'll talk about how

A Guide to Implementing an R Graphics Device with the RGraphicsDevice package

we gather them together to form a device. We can collect these functions in an instance of the
class. Wefirst create an instance and then set the slots, e.g.

funs = new(" RDevDescMet hods")

funs@ctivate = function(dev) { cat("Activating the device\n") }
funs@ine =
function(x1, yl1l, x1, yl, gcontext, dev) {

do sonething to render the line

}
Alternatively, we can collect the functionsinto alist and coerce thisto an .Andwhen
we are exploring an implementation, we might want to use functions that print the name of the method each
time the are caled. dummyDevi ce() creates such an instance.

Initialization via i ni t Devi ce()

In addition to the twenty one graphical primitive methods in , thereisasoinit-
Devi ce() that isnot called by the R graphicsengine. If thisisnot NULL, we call thisjust after creating the
object in C but beforeinitializing and registering the device with the R graphicsengine. This
is an opportunity to set different fieldsin such asthecol andfil| that are propagated
through the graphics system when the deviceisinitialized. Some of these parameters(col ,fi ||, ps) can
be specified directly in the call to gr aphi csDevi ce() and if we are just setting these, we do not need a
function fori ni t Devi ce() . However, if we need to set additional fields, we can do so before the device
isinitialized by the graphicsenginewithi ni t Devi ce() . Alternatively, if we can set the fields of interest
after thedeviceisregistered, we can do so directly with thereturn value of thecall togr aphi csDevi ce().

We should note that calling R functions from C is more expensive than calling C routines from C. Also,
some of the operations that graphical primitive functions can be time consuming and implementing them
in R can be very slow. For example, drawing many, m

Examples

The package contains two example devices. They do not produce polished graphics, but serve as prototypes
for other to hopefully take and complete. These arein exanpl es/ JavaScri pt Canvas/ and exam
pl es/ SVE 1

Drawing on the JavaScript Canvas

Several browsers provide a element for HTML documents and we can use this and JavaScript
to draw within the canvas areawithin the HTML document. Information about the API for the JavaScript
canvasis available at https.//devel oper.mozilla.org/en/drawing_graphics with_canvas

Thefile Rjs.R in exanpl es/ JavaScr i pt Cavas/ contains the code that implements the device j s-
Canvas() and also arelated derived device that creates HTML documents, ht ml Canvas() . We'll look
at thej sCanvas() first. It isdefined as

j sCanvas =

function(file, dim= ¢(1000, 800), col = "black", ps = 10, wapup = witeCode,
{

}

https://developer.mozilla.org/en/drawing_graphics_with_canvas

A Guide to Implementing an R Graphics Device with the RGraphicsDevice package

Thefi | e specifies the connection or file name to which the generated JavaScript code should be written
when the deviceis closed. This can also be a quoted expression (created by quot e() or expr essi on())
giving the R graphics commands. In thiscase, the plot will be created and the generated code will bereturned
directly rather than being written to afile.

The di m col and ps parameters are passed on directly to gr aphi csDevi ce() to initidize its state.
WEe'l return to wr apup later, but suffice to say that it is called to post-process the generated JavaScript
code and write it to the connection, if appropriate.

Thebody of thej sCanvas() startsby creating alist (pages) in which the generated code for the different
plotswill be stored, with acharacter vector for each separate plot. The codefor the current plot being created
isstored in commands.

pages = list()

commands = character()
Each of the graphical primitive functions for the device add their code to the commands vector asthey are
called. When the plot is completed, either when the deviceis closed or when we start anew plot, the appro-
riate method calls endPage() which moves the code for the current plot from conmands into pages.

add = function(x)
commands <<- c(commands, X)

endPage = function() {
i f(length(commands)) {
pages[[|ength(pages) + 1]] <<- conmands
commands <<- character()
}
}
These are hel per functionsthat organize the generated code. We now move on to the functionsimplementing
the graphical operations.

We start by creating a dummy device

funs = as(dunmyDevi ce(), "RJavaScri pt CanvasMet hods")
We don't implement several of the functions, so we assign them the value NULL:

funs@mode = NULL
funs@etriclnfo = NULL
funs@cti vate = NULL
funs@leacti vate = NULL
funs@leacti vate = NULL
funs@ ocat or = NULL
funs@nExit = NULL

We can specify the important device settings such as initial color and point size directly viagr aphi cs-
Devi ce() andinourj sCanvas() . However, we might also want to specify addition device settings. We
can do this after the call to gr aphi csDevi ce() using the object it returns. Alternatively,
wecan haveR call ani ni t Devi ce() function we provide and thisis called after we create the device and
set its methdods, but before the deviceis passed back to the R graphics engine to initialize the state, e.g. the
par () settings. So we might have afunction of the form:

funs@nitDevice = function(dev) {

A Guide to Implementing an R Graphics Device with the RGraphicsDevice package

The all inportant paraneter to set ipr to get the plot region with adequa
dev$i pr rep(1/72.27, 2)
dev$cra = rep(c(6, 13)/12) * 10
dev$cand ip = TRUE
dev$canChangeGamma = TRUE
dev$startgama = 1
dev$startps = 10
dev$startcol = as("black", "R&Int")

}

Now we move on to the functions that actually generate content. We'll start with drawing aline. We are
passed the coordinates of the two end points, the current graphical context and the device. We generate
JavaScript code to set the JavaScript drawing parameters/context and then draw the line. We do this by
creating path, moving to the starting point and drawing a line to the end point.

funs@ine = function(xl, yl, x2, y2, context, dev) {
add(c("// line",
"ctx. beginPath();",
set Cont ext (cont ext),
sprintf("ctx. moveTo(%, %);", as.integer(x1l), as.integer(yl)),
sprintf("ctx.lineTo(%, %);", as.integer(x2), as.integer(y2)),
"ctx.stroke();"))
}
The code is appended to conmands viatheadd() . Sincethisis ashared vector (asispages), we define
the add() function in the scope of our call toj sCanvas() , and we define our graphics operator functions
in that same lexical scope to be able to accessadd() .

Thefunctionset Cont ext () takesthe R graphics context (of class) and generates
JavaScript code to set the JavaScript graphics context accordingly. Since this just returns the generated
code and it isthen passed to add() , theset Cont ext () function does not need accessto commands and
so is defined outside of | sCanvas() . Well return to it later as it illustrates some additional facilities of
RGraphicsDevice that are useful.

To draw arectangle, we can use the built-in JavaScript functions strokeRect or fillRect. The former draws
just the border and the latter fills in the entire area. Which we use depends on whether thef i | | graphics
parameter in R is set. We determine this by checking whether the f i | | field corresponds to the "color"
transparent. Thei sTr anspar ent () function hides the details.

funs@ect = function(xl, yl, x2, y2, context, dev) {
op = if(!'isTransparent(context$fill)) "fillRect" else "strokeRect"

add(c("// rect",
set Cont ext (cont ext),
sprintf("ctx. %(%l, %, %, %);",
op,
as.integer(mn(xl, x2)), as.integer(mn(yl, y2)),
abs(as.integer(x2 - x1)), abs(as.integer(y2 - y1)))))
}

The remainder of the graphical operations are similar, except for those related to text. These are often
quite tricky as we have to dea with different fonts and computing the dimensions of the rendered string

http://www.omegahat.org/RGraphicsDevice

A Guide to Implementing an R Graphics Device with the RGraphicsDevice package

and even rotating the text and working with that. We have not taken the time to make this pretty for our
prototype. Indeed, thisis an areawhere the JavaScript canvasis quite weak. We use Jim Studt's drawing of
Hershey fonts for the moment. Y ou can find the code and more information at http://www.federated.com/
~jim/canvastext/.

To handle text, we implement both the t ext () and st r W dt h() functions. We do the simplest thing for
computing the width of the string which isto multiply the number of characters by the current font size and
the character expansion setting. Thisis done viathe following function:

funs@trWdth = function(str, gcontext, dev) {
nchar(str) * max(10, gcontext$ps) * gcont ext $cex

}
Here we see that we are accessing the current point size and character expansion from the gcont ext
parameter. Rendering the text issimilar to drawing aline or circle. For the JavaScript device, weignore the
rotation and horizontal adjustment for now.

There are two other functions that are important to implement. The first of these isnewPage() and thisis
called when the R graphics engineis starting anew plot. For our device, thisiswhen we move any generated
codein commands into the pages list. So we call endPage() :

funs@ewPage = function(gcontext, dev) {
endPage()
}

The second function is cl ose() which is invoked when we close the R graphics device. This too much
take care of moving any generated codeinto pages. But it must also output all the generated. Here we call
the function that was specified viathe wr apup parameter. By default, this is an external helper function
wri t eCode() and it is passed the list of generated plot commands (pages), the fi | e argument and
any additional arguments provided viathe ... mechanism. wr i t eCode() turns the code for each plot into
a separate JavaScript function, adding some initialization JavaScript commands to retrieve the JavaScript
graphics context from the associated HTML canvas. Then it writes these JavaScript function definitionsto
the specified connection.

Displaying the JavaScript

This graphics device merely generates the JavaScript code that can be run to display the plot(s). We do
thisin aWeb browser and we do it by having the JavaScript code be included in an HTML document. The
file template.html provides, as the name suggests, a template HTML document that you can use. We can
generate the JavaScript code for the plot with a command something like

jsCanvas("nyPlot.js", c¢(500, 500))

l'i brary(maps)

map(' usa')
dev. of f ()
Then we can edit the template.html file. We add a element to reference the newly generated
myPlot.js file. We also set the identifier for the canvas to correspond to the value used in the JavaScript
function we generated. Finaly, we add a call to that function in the attribute of the
element.

<! DOCTYPE HTM. PUBLIC "-//I| ETF/ / DTD HTM.// EN'>
<htnl > <head>

http://www.federated.com/~jim/canvastext/
http://www.federated.com/~jim/canvastext/

A Guide to Implementing an R Graphics Device with the RGraphicsDevice package

<script type="application/x-javascript" src="canvastext.js"></script>
<script type="application/x-javascript” src="nyPlot.js"></script>
<title>Exanpl e of the Canvas</title>

</ head>

<body onl oad="rdraw()">

<canvas i d="canvas" w dth="1000" hei ght="800" >
No support for JavaScript canvas
</ canvas>

</ body>
</htm >

Thisisn't very arduous, but it is tedious. We can have R do thisfor us and that is what the derived graphics
device function ht m Canvas() doesfor us. Thisis easily defined as

ht nl Canvas =

function(file, dim= c(1000, 800), tenplate = "tenplate.htm™")

{

jsCanvas(file, dim wapup = htm Wapup, tenplate = tenplate, dim

}

It is essentially just a call to j sCanvas() , but the key is that we provide our own function to do the

wr apup and emit the generated code. Thisht m W apup() function will create an HTML document with

the code inside it. This function will read the template HTML file and will use the existing

element and itsi d attribute val ue when generating the JavaScript code. It will add the element

and insert the code directly into that element rather than keeping it in a separate file. Then it updates the
's attribute. 1t will also set the width and height attributes of the canvas element to match

the dimensions of the graphics device.

So we can now use thisin calls of theform

I'i brary(nmaps)

ht M Canvas("usa. htm")
map(' usa')

dev. of f ()

If we generate more than one plot, the ht m W apup() handles this by adding new canvas elements, giving
thedifferent identifiers, using these when generating the JavaScript functions and adding callsto all of them
inthe attribute.

The classes

We mentioned the set Cont ext () function above. This accesses the values from R's graphics context and
sets the corresponding fields in the JavaScript graphics context. Most of the values are pretty straightfor-
ward. The point sizeis an integer; similarly, line width and line type are integers.

The graphics context contains the drawing color and the filling color. These are represented as integers
and interpreted in a specific manner by R. See the file GraphicsDevice.h for more information about the
meanings of the different bytes. To make things simpler (we hope), we have provided two classes in the

A Guide to Implementing an R Graphics Device with the RGraphicsDevice package

RGraphicsDevice. These alow us to convert the integer to a string when interpreting the integer and using
it in another system, and to convert from a string to an integer when specifying a color for R to use. These
classes are named and . We can use them viaregular coercion. For example,

as(gcont ext $col , "RGB")

convertsthe color in R's graphics context to astring. This might be anamed color such as"red" or "yellow"
or an hexadecimal RGB string, e.g. "#FF882300". The extra digits give the alpha level for the degree of
trangparency. If we want to set a color in R, we can use RGB strings or named colors and convert them
to an integer with, e.g.

as("red", "R@&Int")

An object of class "R@Int"
[1] 4278190335

Thel end and| j oi n fields are like integers, but have a small set of possible values. They correspond to
enumerated constants in C and we map these into sin R. (For now, you should coerce them
yourself as the C code does not explicitly do this at present but will in the future.) If we look at this value,
we might see something like

as(gcontext$l end, "R _CE_|ineend")

GE_ROUND_CAP
R GE |i neend 1

The name is the value is the important thing to note. This is the human-readable name and the value we
should use. If we want to set the value for the line ending, we should use this name. We can do thisin either
of the following ways:

gcont ext $l end = " GE_ROUND_CAP"
gcont ext $l end = GE_ROUND_CAP
The difference is simply that in the first case, we are coercing the name to an instance of the
class, and in the second, we already have an actual R variable with the corresponding
namethat isan instance of that class. So wetypically usethe second approach when setting the value. For ac-
cessing the value and using in, for example, JavaScript code, we need to map the name to the corresponding
valuein Java. JavaScript uses"round", "butt" and "square”. We can map our valuesof "GE_ROUND_CAP",
"GE_BUTT_CAP' and "GE_SQUARE_CAP" to these in whatever way we think best. In our JavaScript
device, we use string manipulation in thej sLi neCap() function. We do the same for linejoins.

The final part of the R graphics context object that needs some explanation is the font information. The
font f ace isaninteger. O correspondsto plain, 1toitalicand 3to bold. Thef ont f am | y isacharacter
vector of length 201. Each element is a single character. Look at the C code in gr Devi ces package for
more information on how thisisinterpreted.

We have used the approach of creating asequence of JavaScript commandsthat render the plot. Itisvaluable
to instead create objects that correspond to the graphical elements and render those. While the visua result
is the same, the objects can be programmatically manipulated after they have been created. We can hide
objects, change their appearance, move them in animations and allow the viewer to modify them with GUI
controls. To be able to do this, we need to be able to a) create objects, and b) associate the objects in the
plot with the different elements of the plot, e.g. axes, tick marks, title, data points. One of the benefits of
doing thisin the R language is that we can examine the call stack viasys. cal | s() and this allows us,

http://www.omegahat.org/RGraphicsDevice
http://cran.r-project.org/web/packages/grDevices/index.html

A Guide to Implementing an R Graphics Device with the RGraphicsDevice package

abeit in an ad hoc manner, to determine from where the drawing operations were called and to which part
of the plot they correspond.

SVG Device

R provides a rich Cairo-based graphics device and there are two C-level graphics devices that generate
SVG. Also, we can annotate SV G generated from the Cairo-based device using SV GAnnotation. However,
asanillustration and also because we can do more thingswithin R than at the C-level, thereisavery smple
implementation of an SV G graphics device in the package in exanpl es/ SVGE .

The si ze() operation

A graphicsdevicehasasi ze() method/operation and it is expected to return information about itslocation
and dimensions. In C, it is passed references to 4 numbers and is expected to fill these in. In thisinterface,
we are also passed references to 4 C-level number data types and expected to fill them in. We do this by
treating the objects as if they are regular numeric vectors and setting the first value of each. So our default
size function might be

size =
function(left, right, bottom top, dev) {
left[1] =0

right[1] = dev$right

bottoni 1] = dev$bottom

top[1] = dev$right
}
We might allow the function to return a numeric vector of length 4 and have the C code insert the values
into the corresponding C references.

Future Directions

Wehaveprovided arelatively straightforward one-to-one mapping of theinternal codeto R functions. There
are additional features we could add and different idioms and interfaces we could implement. We will at
some stage make additional internal R graphics functionality available so that these can be used by an R
programmer implementing an R graphics device.

We will also make it possible to dynamically modify the C routines that implement an internal graphics
device, e.g. the C routine that is called to draw aline. While we have provided routines that call the cor-
responding R function in the device, it is useful to be able to implement some of these primitives with R
functions and others with C routines and mix code across the languages. Thisis quite easy and amountsto
not removing the function pointers from the code we generate in the tu.R script.

We can avoid lexical scoping by maintaining a state object. We can create an object which represents the
current state of the device and store it in the device's state slot. Each of our graphics engine primitive
functions have access to this and can both query and set it. This can be done now.

We have specified the functions to use to implement the graphical primitives. Thisisthe most direct way of
doing things. Another approach is to use generic functions for these graphical primitives. Then the generic
graphics device would invoke the appropriate method based on the class of the graphicsdevice. To definea

10

http://www.omegahat.org/SVGAnnotation

A Guide to Implementing an R Graphics Device with the RGraphicsDevice package

device, we would define a sub-class of and arrange for the C code that invokes our existing
proxy C routines to convert the instances to that type of object. (This abject could be stored in the device
specific state field.) We can implement this with the existing direct framework and the benefit isthat thisis
amore common and familiar object-oriented programming approach for R programmers. Other than that,
it isnot necessary.

11

	A Guide to Implementing an R Graphics Device with the RGraphicsDevice package
	Table of Contents
	Introduction
	Initialization via initDevice

	Examples
	Drawing on the JavaScript Canvas
	Displaying the JavaScript
	The R_GE_gcontext classes

	SVG Device

	The size operation
	Future Directions

