Google Earth and JavaScript

Duncan Temple Lang, University of California at Davis

Table of Contents

.. 1

(€1 o IS = (= o [P O TP PUPPPPOPPRRP 1
N2 T2 ol] o PP P PP OPP PP PUPPRPPPPPRRN 5
ConNNECEING t0 8N R PIOL ..ot e e e 7

See http://code.google.com/api s/earth/documentati on/reference/index.html

Thisisabrief introduction to putting Google Earth in aWeb page. We'll describe the basic mechanism and
then try to build more interesting and complex pages. Along the way we will discuss

1. HTML,

2. CSS

3. JavaScript in HTML,

4. the computational model for JavaScript

5. Google Earth AP

6. event-driven or asynchronous programming

We cover the introduction to KML and the facilities in R to create KML in a separate document. This
focuses on HTML, JavaScript and the GE API.

Thereisawealth of widgets that we can include in an HTML page. See, for example, the Yahoo Ul.

In what follows, R is no longer running. Eventually, we might mention how we can have R embedded in
Firefox and so can have JavaScript access both R and Google Earth.

Getting Started

Thefirst thing isto create an HTML document and insert a Google Earth panel into it. Basically, we create
an HTML document. We have an HTML node at the root and within this there are 2 parts - a head and a
body. The head is where we put

1. meta-information such asthetitle (to display in the browser's frame) and other details such as the author,
keywords, etc.

2. JavaScript code, typically variable and function definitions.

3. Cascading Style Sheet (CSS) content to control the appearance and layout of el ements

http://code.google.com/apis/earth/documentation/reference/index.html

Google Earth and JavaScript

The <body> iswhere we put the content that is display.
To get Google Earth to display, we add JavaScript codeto the<head>. We put thecodeinside<scri pt >

nodes. Often we put the code in comments also to ensure it doesn't mess up the HTML content, i.e. with <
and > in the JavaScript code being confused for HTML markup.

<script type="text/javascript"><!--
/* JavaScript code */

var x = 1;

--></script>

Often, | like to put the JavaScript code in a separate file and have the browser read that.

<script rel="text/javascript" src="gelnit.js"></script>

@ Note

When things don't (appear to) work, make certain to use the Error Console within your browser,
e.g. Tools->Error Console in Firefox.

1. JavaScript expressions end with ;

2. we have to declare variables with var varName;

3. weinvoke functions asfoo(argl, arg2, ..., argn) asin R, but there are no named arguments.

4. arraysare created asvar a=[1, 2, 6, 8];

5. we create objects with new ClassName(argl, arg2, ...)

6. we invoke methods on objects with obj.methodName(argl, arg?, ...)

7. we define functions as function funcName(paraml, paramz, ---, paramN) { body}

We also include a CSS file which controls the appearance of the different elements. Note how the body
islaid out with color, margins and font. The text of the <H1> elements (the top-level section headers) are
colored blue.

To coordinate where the GE display is located in the display, we put a <di v> element with an
i d attribute corresponding to the one used in the JavaScript code that loads GE, i.e. in the cal to

google.earth.createl nstance().

We specify aclassfor the div which will control its appearance viathe CSSrules. However, we al so specify
the style explicitly as an attribute, so that one wins out over the CSS specification.

Note that we put regular text into our document before the <di v> element. We have a section titlein a
<H1>. There are six such sections, i.e. <HL>, <H2>, ... <H6>. Paragraphs are marked via <p>. Links to
URLsor internal anchors are marked up with <a>, e.g. <a href="http://www.targetURL .org/path/to/doc".

Google Earth and JavaScript

So our HTML document looks like

<! DOCTYPE HTM. PUBLIC "-//1ETF// DTD HTM.// EN'>
<ht m > <head>
<title>Basic Google Earth in Browser example</title>

<l-- *** Replace the key bel ow bel ow with your own APl key, available at http:
<script src="http://ww. googl e. conijsapi ?key=ABQ AAAAWLKbZLYhsmTCWKbTcj bgbRSzF
<script rel="text/javascript" src="gelnit.js"></script>
<link rel ="styl esheet" href="basic.css"></I|ink>
<script><!-- var x = 1; --></script>

</ head>

<body onload="init()' id=' body'>
<hl>Getting Started with Google Earth in a browser</hl>

<p>
This is a brief exanple of displaying Google Earth as part of a web
page. We can do lots of interesting things with the layout, but for
now we display it after this paragraph.

</ p>

<l-- Note that we put a class here and set the style in CSS, but we
specify the style explicitly here. -->
<div id='nyCGE' class="ge" style='"border: 3px solid silver; height: 600px; w dth:

<hr >

<address>Duncan Tenpl e Lang

& t; duncan@wal d. ucdavi s. edu> ; </ a></ addr es
<l-- hhnmts start -->

Last nodified: Mon Mar 8 03:11:33 PST 2010

<l-- hhnts end -->

</ body> </ htn >

Our JavaScript file looks like

googl e.l oad("earth", "1");
var ge = null;

function init() {
googl e. eart h. createl nstance("nyGe", initcCallback, failureCallback);

}

function initcCallback(object) {

Google Earth and JavaScript

ge = object;
ge. getWndow() .setVisibility(true);
}

function failureCall back(object) { alert("Failed to start Google Earth"); }

And our CSS codeis

BODY {
background: #FFF;
margin-left: lem /* # 1% */
margi n-right: 3em /* #10% */
font-famly: Verdana, Arial, Helvetica, sans-serif;

}

div.ge {
border: 1px solid red;
clear: left;

}
hl {

col or: #FFO0O0O;
}

At this point, we are good to go. Load the basic.html file into your browser. After afew moments, you will
hopefully see a Google Earth display within the document. If not, check the error console. (Get used to thisl)

Now the problem is that we have not loaded our KML/KMZ file. To do this, we have to call
google.earth.fetchKML. We do this after the plugin has been initialized, i.e. in the initCallback we passed
to createl nstance. In this callback, we add the command

googl e. earth. fetchKm (ge, 'http://ww. onegahat . or g/ RKM.Devi ce/ boxpl ots. kne', fet
We define our fetchCallback() as

function fetchCall back(obj) {
ge. get Feat ures() . appendChi | d(obj);
alert("Should be visible now" + obj);

}

The call to alert pops up a window in the browser and displays the message. The + in "Should be visible
now " + obj concatenates the strings, coercing obj to a string. We can use multiple +'sin arow, eg. "A
number " + 1 + " and another value" + object.

Now one thing we will quickly notice is that there are no controls displayed on our Google Earth display.
We can call amethod of the GEPlugin object ge

Google Earth and JavaScript

ge. get Navi gati onControl ().setVisibility(ge.VISIBILITY_AUTO);

There are various different settings for how the controls appear. Thisis specified by the sole argument. The
options are SHOW, HIDE and AUTO prefixed by geVISIBILITY _

How do we find this stuff out? From the main reference page http://code.google.com/apis/earth/documen-
tation/reference/index.html, click on the class of interest, e.g. GEPlugin. Within this, thereisalist of meth-
ods. Each has areturn type and you can click on that. For example, clicking on GEPlugin and then GENav-
igationControl, we have information about its methods.

There are many things we can do with the GEPlugin instance. We can load numerous KML/KMZ files. We
can control where we are viewing. We can create new content within JavaScript, either with KML content
asastring, or by calling methods to create new elements, e.g. Placemark, ...

JavaScript

Let's take this a little further than just showing the Google Earth display within our Web page. If that was
al we were doing, we'd almost be as well off using the regular Google Earth application. (Of course, we
have put HTML text around the Google Earth display to add context, etc.) But let's start by adding some
user interface (UI) controlsto the HTML page. We might add a series of radio buttons that allow the viewer
to control which KML/KMZ file to view and to hide the others. We might also use a pull-down menu or
use check-boxes which are not exclusive like radio buttons. So now we need to know about HTML forms.

The ssimplest HTML form element is a button. We can create this with

<i nput type="button" val ue="Show boxpl ots"/>

inour HTML document. The only thing we need to do is specify what happens when the viewer clicksthe
button. We can do this with an HTML form or a JavaScript command. In this version of our HTML file,
well in-line the JavaScript code that creates the Google Earth instance and have it add the controls. But in
addition to the three different functions (init, initCallback and failureCallback), we'll define a function that
we can use to respond to the click of the button to fetch the KMZ file as we did before. We till have the
fetchCallback function so all we need to do when responding to the viewer clicking the button is evaluate
the command

googl e. earth. fetchKnml (ge, 'http://ww. onegahat. or g/ RKM.Devi ce/ boxpl ots. knz', fet

So we can specify this as the command for the onclick attribute of our <but t on> element.

<i nput type="button" val ue="Show boxpl ots"
oncl i ck="googl e. earth. fetchKm (ge, 'http://ww. onegahat. or g/ RKM.Devi ce/ boxpl ot s

However, we can do better. We can automate the rotation of the globe and zooming in to show the region
of interest more clearly. The JavaScript to do thisis something like

var | ookAt = ge.getView). copyAsLookAt (ge. ALTI TUDE_RELATI VE_TO_GROUND) ;
| ookAt . setLatitude(37);

http://code.google.com/apis/earth/documentation/reference/index.html
http://code.google.com/apis/earth/documentation/reference/index.html
http://code.google.com/apis/earth/documentation/reference/interface_g_e_navigation_control.html
http://code.google.com/apis/earth/documentation/reference/interface_g_e_navigation_control.html

Google Earth and JavaScript

| ookAt . set Longi tude(-122);
ge. get View() . set Abstract Vi ew(| ookAt) ;

We could add these commands to the oncl i ck attribute by separating the commands with ';'. However,
it is better to define a function to set the view and then call this from the oncl i ck attribute. So we can
define a JavaScript function setView() as

function setView(long, lat) {
var | ookAt = ge.getView).copyAsLookAt (ge. ALTI TUDE RELATI VE_TO GROUND) ;
| ookAt . set Longi tude(l ong);
| ookAt . setLatitude(lat);
| ookAt.setAltitude(100); /* W also set the altitude. */
ge. getView(). set Abstract Vi ew(| ookAt) ;

}

Thenwecancal itinour oncl i ck attribute as

<i nput type="button" val ue="Show boxpl ots"
oncl i ck="googl e. earth. fetchKm (ge, 'http://ww. onegahat. or g/ RKM.Devi ce/ boxpl ot s

E Note
Thisis not working w.r.t. altitude

If we wanted to have check boxes, we would add something like the following to the HTML

<i nput type="checkbox" onchange="fetch(' http://ww. onegahat. or g/ RKM./ Exanpl es/City
<i nput type="checkbox" onchange="fetch(' http://ww. onegahat . or g/ RKM./ Exanpl es/ seal

Now we need to define the JavaScript function fetch() . This basically looks at its argument, the name of
the KML file to load, and sees whether it that file has aready been loaded and is currently visible. If it is
not, it fetches and displaysiit; if it is, it hidesit. To do this, we need to keep a "hash” table or associative
array containing the fetched object and indexed by the name of the file. Thisis used to store the object. We
also need to know if theis currently displayed or not. Thiswill allow usto toggle the display, while holding
on to the object. So we use 3"globa" variables. (These are only visible within thisHTML document.) Note
the {} to initialize them. This makes an associative array, essentially the same as a named list in R. The
fetch function is called with the name of the KML fileto load. If it is not aready in the table, we download
it as before. The callback function specified in the fetchKml call needs to both show the KML object and
also put the resulting object into the tables kml Objects and kmlShown.

var km Qbj ects {};
var km Shown {};
var pendi ngURL;

function fetch(url) {
var tnp = km Qbj ects[url];
if(tnmp == null) {
/] fetch it.
pendi ngURL = url;

Google Earth and JavaScript

googl e. eart h. fetchKm (ge, url, fetchCall back);
} else {

i f(km Shown[url])

ge. get Feat ures() . renmoveChi |l d(t np) ;
el se

ge. get Feat ures() . appendChi | d(t np) ;

/1l change whether it was shown or not in the table.

km Shown[url] = !'km Shown[url];

function fetchCall back(obj) {

var url = pendi ngURL;

pendi ngURL = nul | ;

if(obj '=null) {
ge. get Feat ures() . appendChi | d(obj) ;
km Cbj ects[url] = obj;
km Shown[url] = true;

} else
alert("Failed to load " + url);

}
Connecting to an R plot

Now, the next and final step in our exampleisto create aplot in R and connect that with the Google Earth
display. We want to have an R plot beside the Google Earth display and to allow interactions on the R plot
to change the view in the GE display. The R plot will be displayed in the browser. We naturally think of
using a PNG or JPEG file. But how do we get interactivity on this? We can use an HTML image map. But
a better way isto use an SV G plot. We can generate thisin R. If

capabilities()["cairo"]
returns TRUE, the svg() function will be available. Alternatively, we can use the Cairo package.

SVGisan XML diaect. The SVG plot from R will have instructionsto draw each of the graphical elements
in our plot. We can work with this XML document and annotate the elements to specify JavaScript event
handler code.

Well continue with the temperature data. Let's start by loading the temperature data and arranging it into a
dataframe with a variable giving temperature for each of the 4 months:

data(tenperature, package = "RKM.")

Z = with(tenperature, unstack(tenperature, tenp ~ nonth))

Now let's create atime seriesfor each city. We can do this as a specific case of aparallel coordinates plot or
by using mat pl ot (): We might also consider drawing box plots for each month and then superimposing
the parallel coordinate points

WEe'll use the simpler mat pl ot () Now we will create the SVG plot

['i brary(SVGAnnot ati on)
doc = svgPl ot ({
matpl ot (t(z), type = "I", axes = FALSE, ylab = "Tenperature",

Google Earth and JavaScript

main = "Tenperatures for 100 cities for different seasons")
box()
axi s(2)
axis(1, at = 1:4, c("Jan", "Apr", "Jul", "Cct"))
mat plot (t(z), type ="1")

})
Next we get the SV G objects that represent the time serieslinesin the plot:

series = unli st (getPl ot Poi nt s(doc))

Now, what we want to do with these XML (SVG) nodesisto add anonnouseover attributeto each. The
code in this attribute is responsible for moving the view in the Google Earth display to the corresponding
city. We need to get the longitude and latitude for the corresponding city, and then we can call our setView
JavaScript function.
cnds = sprintf("parent.setViewm(%, %)",
- tenperature$l ongi tude[1: 100],
t enperature$l atitude[1: 100])
i nvi si bl e(
mappl y(function(node, city, cmd) {
#addTool Ti ps(node, city)
xm Attrs(node) = c(onnouseover = cnd)
}, series, tenperature$city[1l:100], cnds))

We add a CSS file to the SV G file to control the appearance of rectangles used for the tooltips. Then we
save the SVG document to afile.

addCSS(doc)
saveXM.(doc, "cityTenps.svg")

We have choices as to where we do this. We can do it in R and insert the JavaScript code as the attribute.
Alternatively, we can defer getting the longitude, latitude pair to JavaScript. There is no point in doing
the latter, but we could. We can write R data to be available in JavaScript using the JSON format and the
RJISONIO (or rjson) package.

Now we assemble the HTML document that displays the GE plugin and the SV G plot. We have the same
basic structure. The only things we add are

1. the codeto fetch and load the KMZ file for the temperatures
2. display the SV G figure in the body of the HTML document

We use the following to display the SVG

<obj ect data="cityTenps. svg"
type="i nage/ svg+xm " wi dt h="960" hei ght="800"/>

Here we specify the name of the file, its width and height and important the type of content that is being
displayed.

How we arrange the GE display and the SV G plot is another issue. We may want to put them side by side
or one on top of the other. We can do the latter with separate paragraphs. Side by side can be done with

Google Earth and JavaScript

tables, but we are much better off using the more general, flexible but somewhat more complicated layout
mechanism available via styles and CSS.

The idea is that the viewer can mouse over any of the lines i

1996 4 pm

& A / 'y ¥ i o
il i ."'f aoF S

it
e TR T T R

§72 " iy

v

o

=

I'I
|
i
w

158

Data 510, NOAA, U.S. Navy, NGA, GEBCC
Image © 2010 DigitalGlobe
Image © 2010 TerraMetrics

Image |IBCAO

	Google Earth and JavaScript
	Table of Contents
	
	Getting Started
	JavaScript
	Connecting to an R plot

