Client-side SOAP In S

Duncan Temple Lang, University of California at Davis

Table of Contents

P 01 1 = AT 1
Converting the SValUES 10 SOAPeiiieiie e e e e e s s e e e e e e e e e aarnareees 3
TRE RESUIT ...ttt e e e e e e et e et e e e e et e et b eeeeeaee e e e b b eeeeaseeas bbb e eeeaeeeeerraaan 3
0] =T 4
Tz 1 10 = USSP 4
S AV [l B L=w F = (0] o YR 5
(@101 S AN = o o] K= 6
LT 7 7

Abstract

Thisgivesabrief introduction to the client-side SOA P mechanism provided by the SSOAP package. SOAP
stands for the Simple Object Access Protocol and is a means for making remote functions callsin a client-
server architecture using XML and HTTP. Thisis one of the primary Web Services vehicles. This package
leverages the XML package for parsing and generating XML from within S and the HTTP connection
classes to send and receive the communications. The package provides a mechanism to automatically
generate S code that implements an interface to a Web server described by a WSDL (Web Service
Description Language) document. The SSOAP package is currently a basic attempt to implement a client-
side mechanism for invoking SOAP methods. SOAP stands for the Simple Object Access Protocol and is
documented in [SOAP:W3Spec]. It uses XML to encode remote procedure calls (RPC) from aclient to a
server and transmit the result back to the client. While XML is used to describe the content of the call and
result, HTTP is used to implement the communication of these data. In S, we have the XML package with
which we can read and write XML. R provides the socket Connect i on() function with which we can
create aread-write stream between R and a SOAP server. Combining each of thesewithther eadLi nes(),
we can implement the entire client-server communication mechanismin S code and implement basic callsto
SOAP servers. The packageisat avery early stage and ismore of an experiment and exampleof using XML.
There are severa details to work out before it is functional, and even more before it is robust. The hope is
to encourage othersto investigate it and bring their knowledge of SOAP, etc. to help fix the problems.

Note

Recent revisions have made the package more robust and added features to ~"compile” client-
side functions for server methods that include information about parameter and return types.
Thanks go to Vincent Carey, Robert Gentleman and Jianhua Zhang all of Harvard and the
BioConductor project for illustrating issues.

The top-level function for invoking a SOAP method is. SOAP(). There are several pieces that one has to
pass to this to define the SOAP method request. The first thing you have to provide is the identity of the
SOAP server. You create a SOAP server object in S using the SOAPSer ver () function and you giveit the
name of the host machine (e.g. ser vi ces. ensenbl . or g) and the file within the server that identifies

http://www.omegahat.org/SSOAP
http://www.omegahat.org/SSOAP
http://www.omegahat.org/RSXML

Client-side SOAPIn S

the SOAP server. If the server is not listening for requests on the usual HTTP server port (i.e. 80), you can
also specify the port on which it is listening. For example, to communicate with the Ensembl soap server,
we can specify the server as

SOAPSer ver ("servi ces. ensenbl . org", "cgi-bin/ensenbl _rpcrouter", 7070)
Having identified, the server, we must also specify the name of the method to invoke and provide any
arguments that are needed to parameterize the call to the method. The name of the method is given as a
simple string viathe met hod argument (what a surprise!). The arguments are given via S's ... mechanism
asregular S objects.%' In some calls, you will know the names of the parameters for the SOAP method. In
that case, you can give them in the usual S fashion:

. SOAP(server, "nyMethod", countryl = "England", country2 = "Japan")
These names are used XML tags within the SOAP request to identify the arguments.

<SOAP- ENV: Body>
<x:getRate xm ns=...>
<countryl xsi:type="xsd: string">Engl and</countryl>
<country2 xsi:type="xsd: string">Japan</countryl>
</ get Rat e>
</ SOAP- ENV: Body>

In other cases, youwill only know the order of the parameters and you need not provide names. The. SOAP()
will use ““made-up" names for the XML elements.

Most SOAP servers will also require that you specify what is called a SOAPAction value. Thisis a string
that isincluded inthe HTTP request to the server to help it interpret the request. How you find this string is
server-dependent. However, onceyou haveit, you specify itinthe. SOAP() call viatheact i on argument.

For some servers, the actua value is the one announced in the server's documentation combined with the
name of the method. For example, a SOAPAction of ur n: xrret hods- del ayed- quot e for a method
get Quot e would betransformed to ur n: xmet hods- del ayed- quot e#get Quot e. Obvioudly, itis
convenient and lesserror-proneto havethe. SOAP() function do thisfor usrather than haveto input the same
information in two places. So, by default, this is what the . SOAP() function does using its handl er s()
argument. Specifically, thisis a collection of functions that are used to modify the inputs and process the
outputs for the basic . SOAP() mechanism. They allow us to parameterize the . SOAP() function without
having to write methods for standard datatypes or override functions. We can supply very specific functions
that takeinputsfromthe. SOAP() call and return suitably modified values. Thedefault handlersare available
by calling SOAPHandl er s(). And within this, the element isisresponsible for pasting the user-
supplied act i on value with the method name. If thisis not what is expected for the particular server, you
can specify adifferent collection of handl er s.

In addition to the <SOAPAct i on> value, the server also expects a particular XML namespace to be used
for the XML tags that give the method name and the arguments. This can be given as a simple string via
the xm ns argument. If you explicitly want to control the local identifier used in the tags (e.g. the X in
<x: met hodName>) for this namespace, you can supply that name in the character vector using

xm ns = c(x="http://nyNanespace/ URI ")

More than one namespace can be used, but while the others will be included in the XML for the request,
they will typically play no role in the invocation.

Client-side SOAPIn S

Thefinal aspect of the. SOAP() call isthe naneSpaces argument. The SOAP request is enclosed within
an <Envel ope> and within that an <Body> element within the XML. These are qualified with suitable
namespace identifiers and declarations to denote that they are SOAP requests and to specify the version
of SOAP and how they and the sub-nodes should be interpreted. So we need to add these hamespace
declarations to the XML <Envel ope> eement in the request. The naneSpaces argument used to
identify these ““globa" or SOAP-level names by giving the name-value pairs as a named character vector.
Each name-value pair givesthe identifier for the namespace and its URI.

In much the same way that we may want to omit or override some of the default namespaces, we
call a function SOAPNaneSpaces() to get the vector namespaces. By default, this returns the usual
collection. One can switch between different versions of namespaces such as version 1.1 and 1.2 by
giving the appropriate name as the value of the ver si on parameter. This is used to index the list
. SOAPDef aul t Nanes and indeed, you can add additional collections to that list. Regardless of which
collection of namespacesyou select in thislist, you can a so specify your own valuesfor particular elements
within that collection or simply augment it with new ones. We do this by listing the name-value pairsin
the call to SOAPNamneSpaces ().

If you want to get a subset of the values within a particular collection of namespaces, you can give the
names of the elements to include or, if more convenient, the ones to exclude. For example, the following
two commands give the same collection, but work by including the elements of interest and excluding the
extraneous ones, respectively.

SOAPNaneSpaces(i ncl ude = c(" SOAP- ENC', "SQAP-ENV"))
SOAPNaneSpaces(exclude = c("xsi", "xsd"))

The main purpose of the SOAPNaneSpaces() function is to make it easy to control what isincludein a
single call. It avoid the need to create temporary variables with the correct values, pass them in the call and
then remove them. The function approach allows the collection to be specified in-line within the call.

Converting the S values to SOAP

The basic mechanism for converting S objects to SOAP is implemented in the functions t 0 SOAP(),
t 0SOAPAr ray() and t 0SOAPSt r uct (). These can be used in converting arguments to a SOAP call
or implementing a SOAP server and converting the result to a SOAP object. The mechanism is simple.
Primitive scalars are mapped to their equivalentsin the X SI/XSD schema. Real numbers map to S numeric
types, booleans map to logical, int to integers and strings to character vectors. Non-scalar primitives (i.e.
vectors of length >1) and unnamed lists are mapped to SOAP arrays. Named lists are mapped to SOAP
structures.

The Result

Typically we will be interested in the result of the . SOAP() call. Thisis procssed when the server returns
it viaanother SOAP envelope. Assuming there were no errors, we extract the contents of that envelope and
passthe XML nodeto f r omSQAP(). This attemptsto convert it to an S object based on some basic ideas. It
handles the primitive types defined in the XSI and XSD schema in the natural manner. Real numbers map
to S numeric types, booleans map to logical, int to integers and stringsto character vectors. Arraysin SOAP
aremappedtolistsin S. If they have the same primitive type, we can collapse them to aregular vector. (This
isnot currently done?). Support for partially transmitted and sparse SOAP arraysisimplemented, but multi-
dimensional arrays have yet to be enabled. (Please let me know of an example.) SOAP complex objects are

Client-side SOAPIn S

mapped to S3-style objects in which we create alist with named elements taken from the sub-nodes of the
XML result. Thisworks recursively and the same rules apply to these sub-nodes.

If you want to take over the conversion, you can specify a different function in the SOAPHandl er s(). It
should be named r esul t and should take 4 arguments. These are

* thefull XML content returned by the server, i.e. the <Envel ope> element

» the HTTP header given as a vector of name-value pairs. This can be useful for determining auxillary
information about the XML.

« the name of the method that was invoked. This may be needed to get the appropriate element inthe XML
tree that contains the resuilt.

» the SOAP server object identifying which server was used. If this has specific characteristics about how
it returns values, we may want to build thisinto the handler.

Errors

If there was an error in the SOAP call, the server responds with an HTTP error. Along with the header
information, the server also adds some information about the source of the error. We return this as a
SOAPFaul t object that identifies the nature of the failure and contains any extrainformation provided by
the server. Essentially, these are exceptions that we would throw if we had an exception system.
Thereare4 typesof built-in SOAP errors and they each have the same structureinherited from SOAPFaul t .
» SOAPVer si onM smat chFaul t

* SOAPMust Under st andFaul t

« SOAPC i ent Faul t

» SOAPSer ver Faul t

If an error is not one of these types, we create a SOAPCener al Faul t object and include its
<f aul t code> asasdlot in the object.

Examples

. SOAP(SOAPSer ver ("servi ces. xnet hods. net", "soap"),
"get Rate", countryl="England", country2 = "Japan",
acti on="urn: xmet hods- Curr encyExchange")

. SOAP(SOAPSer ver ("servi ces. xnet hods. net", "soap/servlet/rpcrouter"),
"getPrice", "0596000278",
acti on="urn: xmet hods- BNPri ceCheck")

s <- SOAPServer("http://services. xmet hods. net/soap")

Client-side SOAPIn S

. SOAP(s,
"get Quote", "AMZN',
acti on="urn: xmet hods- del ayed- quot es#get Quot e")

. SOAP(SOAPSer ver ("servi ces. soaplite.coni, "tenper.cgi"),
"c2f", 37.5,
action="http://ww. soaplite.com Tenperatures")

Different action and namespace.

Specify handl ers=NULL to avoid the additional processing of the
SOAPAction string, i.e. the appending of the nethod nane.

This kills off all the handlers. If we want to renove only the
"action" elenment, we have to be nore explicit.

sl <- SOAPServer ("services.soaplite.con, "interop.cgi")
. SOAP(s1,

"echoString", "FromR',

acti on="urn: soapi nt erop",

xm ns=c(namespl="http://soapinterop.org/"),

handl ers =NULL)

Service Declarations

Somtimes, aserver'smethodsare publishedinaWSDL [w3:WSDL] (Web Services Description Language?)
file. Thisis an XML description of the different methods and the details of how to call them. It lists the
expected types of the arguments and return value, the namespaces and SOAP action strings, etc. Since this
isan XML file, we can easily read it into S and use the information to generate function definitions that
implement the . SOAP() calls. Thisisvery similar to reading IDL filesin CORBA and DCOM to generate
client bindings.

Note

In response to a query by Vincent Carey, we have now implemented a basic mechanism to
read WSDL files and create S functions that can be used to call SOAP server methods. Thisis
intended to be done by a person interested in a particular SOAP server and who wants to create
a package providing access to it from R. In other words, this is a pre-processing step that is
done once and not by each user and each time she wants to access the SOAP server.

The idea is quite simple. We start by reading the WSDL file into R using the smple DOM parser
from the XML package. The function pr ocessWSDL() does this and returns an object of class
SOAPSer ver Descr i pt i on. Thiscontainsinformation about how to connect to the server, its methods
and also any data typesit defines for use in these methods. It is possible for multiple serversto be defined
inasingle WSDL file. We have left this possibility open but have not been entirely consistent. Much of the
testing and devel opment has been done using the KEGG WSDL file.

I'i brary(SSOAP)
def = processW5DL()

http://www.omegahat.org/RSXML

Client-side SOAPIn S

Given this definition, we can now use the genSOAPC i ent | nt er f ace() function to generate S
functions for each of the methodsin the server.

ff = genSOAPCl i entlnterface(def = tnp, tnp@ane)

@ This has the additional side-effect of defining $4-style classes for each of the complex compound data
types defined in the WSDL file. It does this by iterating over the dots described there and adding them as
dots to an $4 class of the same name as the compound complex type. For example, the GENESResul t
typeinthe KEGG. wsdl file

<xsd: conpl exType name="GENESResul t ">
<xsd:al |l >
<xsd: el enent nanme="ki d" type="xsd:string"/>
<xsd: el enent nanme="keggdef" type="xsd:string"/>
</xsd:al | >
</ xsd: conpl exType>

givesriseto a corresponding $4 class
get d ass(" GENESResul t ")

Slots:

Nane: kid keggdef
Cl ass: character character

Let's return to the methods generated by the call to genSOAPC i ent | nt er f ace(). Thereisafunction
for each of the <oper at i on> elementsin the <bi ndi ngs> element of the WSDL document. We map
the names from SOAP style to $4 style. By this, we mean that we remove any underscores (), capitalize
thefirst letter of al but the resulting first word, and then collapse the words into a single word by removing
the space. For example, get _al | _nei ghbors_by geneismappedtoget Al | Nei ghbor sByGene.
Thisis acommon programming convention and avoids complexity in S when having to quote the _.

Each of these functions has access to the S4-WSDLIVet hod object that was created when from the WSDL

file description. This object contains all the information about the method including its name, parameter
types, return value type and SOAP action. (At present, we use lexical scoping to make this object available
to the function. In the future we could perform direct substitution when creating the function, but thisis
harder than it need be at present.) The body of thisfunction simply involvesacall to the. SOAP() function,

providing it with the server, arguments, type information, SOAP action, etc. These functions have aformal

list of parametersthat are computed from the WSDL description and passthese argumentsinacall viathe...

parameter of the. SOAP() function. Inthisway, the functions provide more information for the caller than a
regular SOAP-call. Additionally, the function passes the type information about the SOAP parameters and
these are used to control how the arguments are converted to their SOAP equivalent. Thisisimportant and
convenient as it provides a way for the user to pass a scalar value, for example, and have it be represented
appropriately asascalar or an array. Thisremovesthe ambiguity introduced from S's unusual but consistent
view of scalars being simply vectors of length 1.

Other SOAP Tools

Other SOAP interfaces include SOAP::Lite, Apache's Java SOAP classes.

Client-side SOAPIn S

SOAP

	Client-side SOAP in S
	Table of Contents
	Abstract
	Converting the S values to SOAP
	The Result
	Errors
	Examples
	Service Declarations
	Other SOAP Tools
	SOAP

