R documentation

of all in ‘../man’

March 30, 2009
R topics documented:
Script-class e e e 1
findWhenUnneeded 3
getDependsThread 4
getDetailedTimelines 4
readSCripto 6
getExpressionThread 7
getlnputs L e 7
getPropogateChanges L o 9
getVariableDepends Lo 9
getVariables 10
guessTaskType o . 11
makeCallGraph e 12
makeVariableGraph 13
makeTaskGraph e 14
separateExpressionBlocks 0oL oo 15
sourceVariable 16
splitRedefinitions 17
Index 18
Script—-class The Script class and elements

Description

This package works with collections of expressions or code blocks and such a sequence can be
thought of as a script. The Script class is a list of code elements. Such objects are typically
created via a call to readScript. They can be read from XML files, tangled Sweave output,
regular R source files and R source files that are annotated to identify the general task of each code
block. This last type of script has its own class named AnnotatedScript and the code elements
are annotated with labels such as datalnput, simulate, plot, model, eda and so on.

Each element of a Script list represents code. These are stored as objects of class ScriptNode.
A ScriptNode class has slots for the code, the taskType indicating the high-level nature of
the code, and an id so we can easily refer to it.

1

2 Script-class

While our focus is on the code elements in a Script, we work with meta-data about the code
elements. We identify information such as the input variables required by a code element, the
variables it assigns (the outputs) and so on. This information is stored in a ScriptNodeInfo
object. And a collection of such objects that parallels a script is a Script Info object.

We can easily map a Script or a ScriptNode to the corresponding meta-information via the
coercion methods as (script, "ScriptInfo") and as (node, "ScriptNodeInfo").

Objects from the Class

Objects of class Script are created with readScript.

Objects of class ScriptInfo are created with get Inputs oras(, "ScriptInfo").

Slots

.Data: the elements of the list.

location: a character string that gives the file name or URL of the code for this script.

Extends

Class "1ist", from data part. Class "vector", by class "list", distance 2.

Methods

coerce signature (from = "Script", to = "ScriptInfo"): converta Script to
a ScriptInfo to access the meta-information

coerce signature (from = "ScriptNode", to = "ScriptNodeInfo"): compute the
meta-information from an individual code element.

Author(s)

Duncan Temple Lang

See Also

readScript

Examples

f = system.file("samples", "results-multi.R", package = "CodeDepends")
sc = readScript (f)
as(sc, "ScriptInfo")

u = url ("http://penguin.biostat. jhsph.edu/cpkg/49c0/90223e7b16d72240a928f69%bccd72a0albic
sc = readScript (u)
as(sc, "ScriptInfo")

findWhenUnneeded 3

findWhenUnneeded Determine the code block after which a variable can be explicitly re-
moved

Description

These functions analyze the meta-information about code blocks and determine when a variable is
no longer needed and can add code to the relevant code block to remove the variable.

Usage

findWhenUnneeded (var, frags, info = lapply(frags, getInputs), simplify,
index = TRUE, end = NA, redefined = FALSE)

addRemovelIntermediates (doc, frags = readScript (doc), info = getInputs (frags), va
Arguments

var the name of the variable(s) whose final

doc the location of the script, given as a file name or a connection

frags an object of class Script which is a list containing the code blocks in the
script. This is typically obtained via a call to readScript.

info an object of class Script Info whichis alist of ScriptNodeInfo objects.

simplify ignored

index a logical value indicating whether £indWhenUnneeded should return the in-
dices of the code blocks/fragments or the code fragments themselves.

vars the names of all the variables of interest

end the value to use if the variable is used in the last code block, i.e. the end of the
script.

redefined a logical value which controls whether we return the earliest code block in which

the variable is redefined rather than when the variable is no longer used. Redef-
inition is a kind of "no longer being used" but for the value, not the variable.

Author(s)

Duncan Temple Lang

See Also

readScript addRemoveIntermediates

Examples
f = system.file("samples", "cleanVars.R", package = "CodeDepends")
sc = readScript (f)

findWhenUnneeded ("z", sc)

code = addRemovelntermediates (f)
Note that rm(x, y) is added to the 5th code block
code[[5]]

4 getDetailedTimelines

getDependsThread Compute which code blocks in a script are inputs to define a variable

Description

This function is used to determine which code blocks in an R "script" that are needed to define a
particular variable. This finds the smallest complete set of expressions or code blocks that must
be evaluated in order to define the specified variable(s). It omits expressions that do not provide
outputs that are not used as inputs to (indirectly) define the speciied variable.

Usage

getDependsThread(var, info, reverse = TRUE)

Arguments
var the name of one or more variables in the script
info a list of the meta-information for each of the code elements in the script.
reverse a logical value that determines whether we reverse the indices of the expressions
or leave them as end-to-first.
Value

An integer vector giving the indices of the script code blocks which are required to define var.

Author(s)

Duncan Temple Lang

See Also

getExpressionThread readScript getVariables

Examples

sc = readScript (system.file("samples", "dual.R", package = "CodeDepends"))
idx = getDependsThread ("fit", as(sc, "ScriptInfo"))

getDetailedTimelines
Compute and plot life cycle of variables in code

Description

These functions allow one to get and visualize information about when variables are defined, rede-
fined and used within and across blocks of code in a script or the body of a function.

getDetailedTimelines 5

Usage
getDetailedTimelines (doc, info = getlInputs(doc), vars = getVariables (info))
S3 method for class 'DetailedVariableTimeline':
plot (x, var.srt = 0, var.mar = 5, var.cex =1, ...)
Arguments
doc the name of a file or a connection which identifies the code to be analyzed
info meta-information extracted from the code identifying the inputs and outputs.
See get Inputs.
vars the variables of interest
X the DetailedvVariableTimeline object being plotted
var.srt rotation of the labels for the vertical axis listing the variables
var.mar the number of lines to leave for the vertical axis. The labels for this are variable
names so one often needs more space or to change the size of the labels.
var.cex character expansion factor for the variable labels on the vertical axis.
additional arguments to the plot command. These might include, for example,
main to put a title on the plot.
Value

getDetailedTimelines returns a data frame with three variables: var, used and defined.
For each variable, there are as many rows as there are code blocks in the document (and elements
in info). (Variables that are redefined will have more rows, but these are essentially different
variables.) These rows correspond to the different code blocks or "time steps". used and defined
indicate whether the variable acted as an input or was defined within this code block. Many will
have FALSE for both as the variable is not used in that code block. var is used merely to identify
the variable.

Author(s)

Duncan Temple Lang

See Also
getInputs
Examples
f = system.file("samples", "results-multi.R", package = "CodeDepends")
sc = readScript (f)
dtm = getDetailedTimelines(, getInputs(sc))
plot (dtm)

table (dtmSvar)

A big/long function
info = getInputs (arimal)
dtm = getDetailedTimelines(, info)
plot (dtm, var.cex = .7, mar = 4, srt = 30)

6 readScript

readScript Read the code blocks/chunks from a document

Description

This is a general function that determines the type of the document and then extracts the code from
it.

This is an S4 generic and so can be extended by other packages for document types that have a
class, e.g. Word or OpenOffice documents.

readAnnotatedScript is for reading scripts that use a vocabulary to label code blocks with
high-level task identifiers to indicate what the code does in descriptive terms.

Usage

readScript (doc, type = NA, txt = readLines (doc))
readAnnotatedScript (doc, txt = readLines (doc))

Arguments

doc the document, typically a string giving the file name. This can also be a connec-
tion, e.g. created via url.

type a string indicating the type of the document. If this is missing, the function calls
getDocType to attempt to determine this based on the "common" types of
documents.
txt the lines of text of the document.
Value

A list of the R expressions that constitute the code blocks.

Author(s)

Duncan Temple Lang

See Also

parse

Examples

e = readScript(system.file ("samples", "dual.R", package = "CodeDepends"))

readScript (url ("http://penguin.biostat. jhsph.edu/cpkg/49c0/90223e7016d72240a928f69bccd’

getExpressionThread 7

getExpressionThread
Find the sequence of expressions needed to get to a certain point in the
code

Description

What’s the difference between this and getVariableInputs, getVariableDepends, getSectionDepends?
This does not currently attempt to get the minimal subset of expressions within the code block.
In other words, if there are extraneous expressions within these blocks that are not actually neces-
sary, these are evaluated. This is important for expressions with side effects, e.g. writing files or
generating plots.

Usage

getExpressionThread (target, expressions, info = lapply(expressions,

Arguments

target
expressions

info

Author(s)

Duncan Temple Lang

Examples

e = readScript (system.file ("samples", "dual.R", package = "CodeDepends"))
getExpressionThread ("fit", e)

getExpressionThread ("y", e)
getExpressionThread ("x", e)

getExpressionThread ("k", e)

With several

getInputs))

s = readScript (system.file("samples", "sitepairs.R", package = "CodeDepends"))

getExpressionThread("covs", s)

getInputs Get input and output variables and literals from R expressions

Description

This function is used to analyze an R expression and identify the input and output variables in the
expressions and related packages that are loaded and files that are referenced.

This might be better called getCodeDepends. It is not to be confused with getVariableInputs.

8 getlnputs
Usage
getInputs (e, collector = inputCollector (), basedir = ".", ...)
Arguments
e the expression whose code we are to process
collector an object which collects the different elements of interest in the code.
basedir the directory for the code relative to which we can resolve file names.
additional parameters for methods
Value
A list with elements:
files the names of any strings used as arguments or literal values that correspond to
file names.
libraries the names of any libraries explicitly loaded within this code.
inputs a character vector naming the variables that are used as inputs to the computa-
tions in this collection of expressions.
outputs a character vector giving the names of the variables that are assigned values in
this block of code, including assignments to elements of a variable, e.g. the
variable x in the expression x [[1]] <- 10.
functions a character vector naming the functions that are called within the code for this
expression. This is not recursive, i.e. does not find the functions called by the
function calls in this section.
Author(s)
Duncan Temple Lang
See Also
parse
Examples
frags = parse(system.file("samples", "dual.R", package = "CodeDepends"))
inputs = lapply(frags, getInputs)
inputs

sapply (inputs, slot, "outputs")

Specify the base directory in which to resolve the file names.
getInputs (frags[[1l]], basedir = system.file("samples", package = "CodeDepends"))

f = system.file("samples", "namedAnnotatedScript.R", package = "CodeDepends")
sc = readScript (f, "labeled")

getInputs (sc)

getInputs(sc[[2]])

getPropogateChanges 9

getPropogateChanges
Determine which expressions to update when a variable changes

Description

This function allows us to determine which subsequent expressions in the document need to be
evaluated when a variable is assigned a new value. This is the "opposite" of determining on which
variables a given variable depends; this is for identifying which variables and expressions need
to be updated when a variable changes. This is of use when propogating changes to dependent
expressions.

Usage

getPropogateChanges (var, expressions, info = lapply(expressions, getInputs), rec

Arguments

var the name of the variable which has changed
expressions

info

recursive

index

Author(s)

Duncan Temple Lang

See Also

getExpressionThread getDependsThread

getVariableDepends Determine dependencies for code blocks

Description

These functions provide ways to determine which code blocks must be evaluated before others based
on input and output variables. getVariableDepends is used to determine the code blocks that
need to be run in order to define particlar variables. get SectionDepends

Usage

getVariableDepends (vars, frags, info = lapply(frags, getInputs))
getSectionDepends (sect, frags, info = lapply(frags, getInputs), index = FALSE)

10 getVariables

Arguments
vars
frags
info
index

sect

Author(s)

Duncan Temple Lang

getVariables Get the names of the variables used in code

Description

These functions and methods allow one to get the names of the variables used within a script or
block of code and from various derived types.

Usage
getVariables (x, ...)
Arguments
X the object with information about the variables
any additional parameters for methods
Value

A character vector, with possibly repeated values, giving the names of the variables.

Author(s)

Duncan Temple Lang

See Also

readScript getInputs

Examples

f = system.file("samples", "namedAnnotatedScript.R", package = "CodeDepends")
sc = readScript (f, "labeled")
getVariables (sc)

getVariables (sc[[3]1])

guessTaskType 11

guessTaskType Guess the type of high-level task of a code block

Description

This attempts to infer the type of the task being performed. There is a small set of known task types,
listed in system.file ("Vocabulary", package = "CodeDepends").

Currently this uses simple rules. In the future, we might use a classifier.

Usage

guessTaskType (e, info = getInputs(e))

Arguments
e the code block to be analyzed. This can be a call or an expression. Typically it
is an element of a Script-class, i.e. a ScriptNode—class object
info meta-information about the
Value

A character vector giving the different task identifiers.

Author(s)

Duncan Temple Lang

See Also

readScript

Examples
guessTaskType (quote (plot (x, y)))

e = expression ({
d = read.table("myData.txt")
d$abc = dS$a + log(ds$b)
d[d$foo == 1,] = sample(n)
B
guessTaskType (e)

12 makeCallGraph

makeCallGraph Create a graph representing which functions call other functions

Description

This function and its methods provide facilities for constructing a graph representing which func-
tions call which other functions.

Usage
makeCallGraph (obj, all = FALSE, ...)
Arguments
obj a function, the name of a function, the name of a package, a character vector of
function names,
all a logical value that controls whether the graph includes all the functions called
by any of the target functions. This will greatly expand the graph.
additional parameters for the methods
Value

An object of class graphNEL

Note

We may extend this to deal with global variables and methods

Author(s)

Duncan Temple Lang

See Also

The graph and Rgraphviz packagess.

The SVGAnnotation package can be used to mae thee graphs interactive.

Examples

gg = makeCallGraph ("package:CodeDepends")
if (require (Rgraphviz)) {
plot (gg, "twopi")

ag = agopen (gg, layoutType = "circo", name = "bob")
plot (ag)

make VariableGraph 13

makeVariableGraph Create a graph describing the relationships between variables in a
script

Description
This creates a graph of nodes and edges describing the relationship of how some variables are used
in defining others.

Usage

makeVariableGraph (doc, frags = readScript (doc), info = getInputs(frags), vars =

Arguments

doc
frags
info

vars

Details

Note that this collapses variables with the same name into a single node. Therefore, if the code uses
the same name for two unrelated variables, there may be some confusion.

Value

An object of class graphNEL from the graph package.

Author(s)

Duncan Temple Lang

See Also

readScript getInputs getVariables
graph Rgraphviz

Examples
u = url ("http://penguin.biostat. jhsph.edu/cpkg/49c0/90223e7b16d72240a928f69bccd72a0albic
sc = readScript (u)
library (Rgraphviz)
g = makeVariableGraph(, sc)

f = system.file("samples", "results-multi.R", package = "CodeDepends")
sc = readScript (f)
g = makeVariableGraph(, info = getInputs(sc))
if (require (Rgraphviz))
plot (g)

14 makeTaskGraph

makeTaskGraph Create a graph connecting the tasks within a script

Description

This function create a graph connecting the high-level tasks within a script. The tasks are blocks of
code that perform a step in the process. Each code block has input and output variables. These are
used to define the associations between the tasks and which tasks are inputs to others and outputs
that lead into others.

Usage

makeTaskGraph (doc, frags = readScript(doc), info = getInputs (frags))

Arguments

doc the name of the script file

frags the code blocks in the script

info the meta-information detailing the inputs and outputs of the different code blocks/fragments
Value

An object of class graphNEL-class.

Author(s)

Duncan Temple Lang

References

put references to the literature/web site here

See Also

readScript getInputs

Examples

Not run:
f = system.file("samples", "dual.R", package = "CodeDepends")
g = makeTaskGraph (f)

if (require (Rgraphviz))
plot (g)

f = system.file("samples", "parallel.R", package = "CodeDepends")
makeTaskGraph (f)

if (require (Rgraphviz))
plot (g)

= gsystem.file ("samples", "disjoint.R", package = "CodeDepends")
makeTaskGraph (f)

Q +h
|

separateExpressionBlocks 15

if (require (Rgraphviz))
plot (g)
End (Not run)

separateExpressionBlocks
Convert a script into individual top-level calls

Description

This function converts a script of code blocks (e.g. from Sweave, XML, or an annotated script) with
grouped expressions into individual top-level calls. The intent of this is to allow us to deal with the
calls at a higher-level of granularity than code blocks. In other words, we can easily compute
the depenendcies on the individual calls rather than on collections of calls. This allows us to re-
evaluate individual expressions rather than entire code blocks when we have to update variables due
to changes in "earlier" variables, i.e. those defined earlier in the script and recomputed for various
reasons.

Usage

separateExpressionBlocks (blocks)

Arguments

blocks a list of the expressions or calls, i.e. the code blocks, in the script.

Value

A list of call or assignment expressions.

Author(s)

Duncan Temple Lang

See Also

readScript

Examples

f = system.file("samples", "dual.R", package = "CodeDepends")
sc = readScript (f)
separateExpressionBlocks (sc)

16 source Variable

sourceVariable Evaluate code in document in order to define the specified variables

Description

This function allows the caller to evaluate the code within the document (or list of code chunks di-
rectly) in order to define one or more variables and then terminate. This is similar to runUpToSection
but is oriented towards variables rather than particular code blocks.

Usage
sourceVariable (vars, doc, frags = readScript (doc), eval = TRUE, env = globalenv (
nestedEnvironments = FALSE, verbose = FALSE)
Arguments
vars the names of the variables which are of interest. This need not include interme-
diate variables, but instead is the vector of names of the variables that the caller
wants defined ultimately.
doc the document containing the code blocks
frags the code fragments
eval whether to evaluate the necessary code blocks or just return them.
env the environment in which to evaluate the code blocks.

nestedEnvironments
a logical value indicating whether to evaluate each of the different code blocks
within their own environment that is chained to the previous one.

verbose a logical value indicating whether to print the expression being evaluated before
it is actually evaluated.

Value

If eval is TRUE, a list of the results of evaluating the code blocks. Alternatively, if eval is
FALSE, this returns the expressions constituting the code blocks. In this case, the function is the
same as getVariableDepends

Note

We should add a nestedEnvironments parameter as in runUpToSection. In fact, consolidate
the code so it can be shared.

Author(s)

Duncan Temple Lang

See Also

getVariableDepends

splitRedefinitions 17

Examples

f = system.file("samples", "dual.R", package = "CodeDepends")
e = readScript (f)

getVariableDepends ("k", frags = e)

sourceVariable ("k", frags = e, verbose = TRUE)

splitRedefinitions Divide a script into separate lists of code based on redefinition of a
variable

Description

The purpose of this function is to take a script consisting of individual calls or code blocks and to
divide it into separate blocks in which a particular variable has only one definition. Within each
bloc the variable is assigned a new value.

At present, the code is quite simple and separates code blocks that merely alter an existing variable’s
characteristics, e.g. setting the names, an individual variable. Ideally we want to separate very
different uses of a symbol/variable name which are unrelated. We will add more sophisticated code
to (heuristically) detect such different uses, e.g. explicit assignments to a variable.

Separating these code blocks can make it easier to treat the definitions separately and the different
stages of the script.

Usage

splitRedefinitions (var, info)

Arguments
var the name of the variable whose redefinition will identify the different code
blocks
info a list of ScriptNodeInfo-class objects identifying the input and output
variables for each code block.
Value

A list with as many elements as there are (re)definitions of the variable each being a list of code
blocks.

Author(s)

Duncan Temple Lang

See Also
readScript
Examples
sc = readScript (system.file("samples", "dual.R", package = "CodeDepends"))

groups = separateExpressionBlocks (sc)

Index

*Topic 1O
readScript, 5
separateExpressionBlocks, 14

*Topic classes
Script-class,1

+Topic hplot
getDetailedTimelines, 4
makeCallGraph, 11
makeVariableGraph, 12

+Topic programming
findWhenUnneeded, 2
getDependsThread, 3
getDetailedTimelines, 4
getExpressionThread, 6
getInputs, 7
getPropogateChanges, 8
getVariableDepends,9
getVariables,9
guessTaskType, 10
makeCallGraph, 11
makeTaskGraph, 13
makeVariableGraph, 12
readScript, 5
Script-class,1
separateExpressionBlocks, 14
sourceVariable, 15
splitRedefinitions, 16

addRemovelIntermediates, 3

addRemoveIntermediates
(findWhenUnneeded), 2

AnnotatedScript-class
(Script-class), 1

coerce, expression, ScriptNodeInfo-metho

(Script—-class), 1

coerce, language, ScriptNodeInfo-method

(Script—-class), 1

coerce, Script,ScriptInfo-method

(Script-class), 1

coerce, ScriptNode, ScriptNodeInfo-method

(Script—-class), 1

findWhenUnneeded, 2

getDependsThread, 3, 8
getDetailedTimelines, 4
getExpressionThread, 4, 6,8
getInputs, 1,4, 5,7,10, 12, 13
getInputs, ANY-method (getInputs),
7
getInputs, function-method
(getInputs),7
getInputs, Script-method
(getInputs),7
getInputs, ScriptNode-method
(getInputs),7
getPropogateChanges, 8
getSectionDepends
(getVariableDepends), 9
getVariableDepends,9, 15, 16
getVariables, 4,9, 12
getVariables, Script-method
(getVariables),9
getVariables, ScriptInfo-method
(getVariables), 9
getVariables, ScriptNode-method
(getVariables),9
getVariables, ScriptNodeInfo-method
(getVariables),9
graphNEL, 11
graphNEL-class, I3
guessTaskType, 10

list,2

makeCallGraph, 11

makeCallGraph, character—-method
(makeCallGraph), 11

WikeCallGraph,list—method

(makeCallGraph), 11

makeTaskGraph, 13

makeVariableGraph, 12

parse, 6, 7
plot.DetailedVariableTimeline
(getDetailedTimelines), 4

readAnnotatedScript (readScript),
5

INDEX

readScript, 1-4,5,10,12, 13,15, 17

readScript, character-method
(readScript), 5

readScript, connection-method
(readScript), 5

Script-class, 1, 10
ScriptInfo-class (Script—-class), 1
ScriptNode-class (Script—-class), 1
ScriptNodelInfo-class, 16
ScriptNodeInfo-class
(Script—-class), 1
separateExpressionBlocks, 14
sourceVariable, 15
splitRedefinitions, 16

url, 5

vector, 2

19

	Script-class
	findWhenUnneeded
	getDependsThread
	getDetailedTimelines
	readScript
	getExpressionThread
	getInputs
	getPropogateChanges
	getVariableDepends
	getVariables
	guessTaskType
	makeCallGraph
	makeVariableGraph
	makeTaskGraph
	separateExpressionBlocks
	sourceVariable
	splitRedefinitions
	Index

