Connecting R & Octave

Duncan Temple Lang
Department of Statistics
Bell Labs

August 29, 2002

Abstract

This outlines a framework for embedding R in Octave and vice-versa. At present, only the basics are implemented.
However, this provides much of the desired functionality.

1 Motivation

Octave (and Matlab) is a powerful language for performing a particular class of numerical computations. The focus of
Octave is quite different from the S environment, but they do share some common features used in general scientific
computing. For example, visualization, simulation, linear algebra, etc. are available in both systems. Octave relies on
external programs to provide visualization techniques. It can be readily directed to use R’s powerful graphics engine.
At the same time, R can make use of the functionality in Octave that R does not supply. For example, differential
equations, rapid matrix operations, etc. are characteristics of Matlab and Octave that aficianados of these systems
frequently provide as reasons why they cannot migrate to S.

By embedding R in Octave and Octave in R, we can marry the best of the two system together and allow each
camp of users stay within their familiar programming environments while accessing the functionality of both. There is
a one time cost to make Octave embeddable and the small amount of generic code to implement the interface between
the two systems. After this, except for the installation and configuration issues (to spedify theBRARY_PATH
andOCTAVE_EXEC_PATHvhat is the correct variable!), the result is essentially cost-free to the user. Octave users
can access facilities for graphics, probability distributions, statistical modelling, inference, etc. from R. And R users
can deploy arbitrary Octave code without much effort.

2 Accessing external Objects

2.1 Octave objects from R

2.2 Calling Functions
3

4 Conversion of objects/values between the systems

4.1 From R to Octave

The algorithm for converting an R object to an Octave value is relatively heuristic at present. If the R object has a
non-trivial dimension attribute (i.&im() returns a value), we assume it is a matrix and create an Okftatré

If the dimension attribute iSNULL, then we check whether it is a list with names. If so, we create an Octave
structure. Otherwise, if there are no names, we create a list of octave vadiage value_list). (This is not
quite functional yet.)

After testing for these special cases of R objects, we move on to the primitive types. The specifics of this are
explained in the following subsection. If the R object is not a primitive, then we typically punt and create a reference
to this complex R object. We have create a special class of Octave objedROanaveObjectReference -
which stores a reference to the R object and acts as a proxy to that object. Almost always, we will only try to use the
value of this object in Octave in a subsequent call to R.

4.1.1 Primitives and Basic Types

Converting from R to Octave is relatively obvious. The primitive type integer, logical and numeric are mapped to row
vectors RowVector). This should probably be a scalar if the R vector has lemigth character vecotor of length
is mapped to a string object, and a longer character vector is mapped to a string steictgr Yector).

4.2 User-level converters

5 Memory Management

When to free objects

6 Examples

We can start the R session and find out about the packages available on is search path and the objects/variables available
in one of these packages (e.g. posit®musing the following commands.

ROctave_callR("search")
ROctave_callR("objects”, 2)

We can invoke any of the standard R functions by merely giving the name and the arguments to the function as
Octave values. Here we generaterandom values from a standard Normal distribution and then we pass them back
from Octave to R for plotting them.

x = ROctave_callR("rnorm", 10)
ROctave_callR("plot", Xx)

Note that the labels are far from ideal. This is because R sees the argument pass@dbtf) ttedl as a literal vector

and not a variable in its own lookup space. To be able to handle this more elegantly we either need to introduce a named

argument call within Octave or drive the computations from R and have Octave as the embedded interpreter/engine.
The following shows a clumsy way to use named arguments. We use the Octave fR@titave_namedCallR

(as distinct fromROctave_callR). This takes the name of the R function as its first argument, in the same way that

ROctave_callR does. After this, the arguments to the R function are given as pairs of Octave arguments. The

name is given first and then the value. If the name can be omitted in the R function call, one specifies it as the empty

string ("') in Octave.

f = ROctave_namedCallR("system.file",
ROctave_callR("source", f)

, "examples”, "™, "Robj.S", "package", "ROctave")

x = ROctave_callR("rnorm", 10)
ROctave_namedCallR("plot", "™, x, "ylab", "Random Normals")

Note that neither resizing or redrawing work in the graphics window. This is because the X events are not passed
toR.

The examples above show how we can call R from Octave. These R functions can involve arbitrary computations
including calling Octave functions. Essentially, these are callbacks from R to Octave. To do this, the ROctave package
must be loaded into R. Then, we can use Metave()function in R to call arbitrary Octave functions. The script
examples/Octave.S provides an example of this. We can invoke this from Octave as

f = ROctave_namedCallR("system.file",
ROctave_callR("source", f)

, "examples”, ™, "Octave.S", "package", "ROctave")

This finds the example script and the evaluates its contents in R. Part of the computations are to call the Octave function
xx which must be available to the Octave session for this to work.

