
March 23, 2007 1Abstract

We describe a package for both R & S which allows expressions in that language to directly invoke
Perl sub-routines and object methods directly. This provides a simple way of making network capabilities
available to S, as well as fast regular expression matching, etc. The interface between R/S and Perl is
achieved by running an embedded Perl interpreter within the R/S session. This gives us direct access
to any existing Perl sub-routines and modules and avoids the use of expensive invocations of Perl as a
sub-process that can only communicate with R/S via strings. The interface (will) allows for R and Perl
computations to be mixed.

This is intended to provide information for the user who is interested in not only knowing about the
available functions in the R/S-Perl interface, but also how they might be used most effectively and what
underlies them. A collection of annotated examples will provide a quicker way to get started.

Perl is a wonderful complementary tool to use with R and S. There are certain tasks that are perfectly
suited to the Perl language and others that one naturally considers expressing in the S-language because of
its. Certain data structures (e.g. trees) are more naturally expressed and manipulated in a language that
supports references such as Perl than in S. But S offers many advantages over Perl, but in different aspects.
We want the best of both to be available to us as users of either. Additionally, the sets of modules or packages
that each provides are quite different due to the different user groups. As statisticians analyze and interact
with more computer and network data than previously, having tools such as DNS, FTP, HTTP, SNMP,
Dates/Calendars, encryption, etc. integrated with the statistical analysis environment/language makes the
overall task easier.

Having a Perl interpreter that is persistent within the S session means that one need not execute Perl
scripts in sub-processes by invoking an external Perl session. This persistence gives us a slight increase in
efficiency as we avoid spawning new processes. More importantly, however, it means that we can use Perl in
much the same way we use R/S interactively. We can store intermediate computations and then decide what
to do next, availing of these previously computed values. Also, we do not have to communicate in terms of
strings. The commands we invoke need not be passed to Perl in strings or files and the results are objects,
not textual representations of objects. This gives us much more freedom to express ourselves and simplify
many constructs.

An immediate consequence of having Perl embedded within S/Splus is that we have access to network
connections. We never added sockets to S4. With Perl, we have a rich set of communication facilities:
sockets, HTTP, FTP, etc. This and the Java and CORBA connections allow us to understand how we can
interact to greater effect with other applications and subject domains.

As with all general interfaces (such as .C(), .Call(), .Fortran(), .Java()), not only do we get easy access
to any of the existing code in that language, but also to any that is created in the future. The cost of
experimenting with a new package is greatly reduced. One does not need to have a collection of wrappers
or interfaces that communicate with those facilities. Instead, they can be dynamically discovered and called
directly. Best of all, a generic interface like this allows people to do things that we might never have thought
of. Have fun and let us know of how it is useful and how it is not!

1 Overview

The package allows one to create one or more embedded and persistent (through the session) Perl interpreters.
It is very similar in spirit to the Java package for R and S. It provides access to the Perl interpreter from
the S-language in the following manners.

Expressions One can evaluate Perl expressions or scripts by passing them as strings.

Files One can (in the near future) direct the Perl intepreter to run a Perl script contained in a file.

Get One can retrieve top-level variables directly.

March 23, 2007 2Sub-Routines In the same way that the .C() and .Fortran() functions can invoke routines in these two
languages, one can invoke Perl sub-routines by specifying the name of the routine and the arguments
to that routine in the form of R/S values.

Methods One can invoke methods of Perl objects in the same way that Perl sub-routines are invoked by
specifying an additional Perl object whose method is to be invoked.

One can even have multiple Perl interpreters at any time and send different commands to each. These
are not necessarily executing in different threads and hence concurrently. It just allows the programmer to
manage name-spaces and computations in a different way that can sometimes be more convenient.

Perl is a curious language. It relies heavily on automatic coercion based on the way a variable is used.
For example, we might have an array

[]
@a = (1,2,3);

We can treat this same object as a scalar by referring to the variable a as $a rather than as an array
@a. Due to the nature the R/S-Perl interface, this contextual information is not available. When we

ask for the value of a variable, we cannot use the Perl syntax to specify whether a scalar, array or hash is
intended. As a result, we specify the intended type as arguments to some of the R/S functions that define
the R/S-Perl interface.

2 Inter-System Object Conversion

The critical aspect of any interface between two systems such as R/S and Perl is how objects in one system
are transferred to the other. The need to communicate R objects as arguments to function calls in Perl and
to return the results of these calls from Perl to R is obvious.

The mapping of primitive objects between the two systems (R/S and Perl) is reasonably trivial and
obvious. In other words, when we pass a string from R to Perl in subroutine call, it is converted to a Perl

integer IV
character PV
numeric NV
logical IV (will be TRUE and FALSE SVs)

scalar of internal type PV, and users know this as a Perl string.
It is natural to map S language vectors to Perl arrays. So a numeric vector containing three values such

as

[]
c(1, 2, 3)

is converted from R to Perl by creating a Perl array and converting each element of the R object according
to table 2 above.

Converting Perl arrays to R is slightly more complicated. This is because the elements of Perl arrays
need not be of the same type (as far as I know). So we might have a Perl array such as

[]
@a= (1, "abc", 2);

The natural representation of this in R/S is a list and so we do this. At present, we make no effort to
recognize that the elements are of the same type and so can be simplified to one of the primitive vector types
(integer, numeric, character or logical).

Named vectors in R/S are naturally represented as hash table or associative arrays in Perl. For example,

March 23, 2007 3[]
x <- c(a=1, b=2, c=3)

can be easily understood in Perl as equivalent to

[]
%x = (’a’, 1, ’b’, 2, ’c’, 3)

The conversions of these types are not done by creating equivalent Perl or R expressions as strings and
evaluating them in the system to which the object is being converted. This would be very problematic to
manage name conflicts, and just to generate the expressions. Instead, these primitive types are converted
directly in C code that provides the glue between the two systems, defining the interface.

2.1 Non-Primitive Object Conversion

As with the Java and CORBA packages, we endeavor to leave non-primitive (i.e. class objects) in the
language in which they are defined. We transfer a reference in Perl to R by storing it in an internal (i.e.
managed in C and not in the Perl namespace) Perl hash table and returning an R/S object that contains
sufficient information to resolve that object. In other words, we create an object that contains the key used
to store the object in the Perl hash table, an identifier for the table. To allow R and S users to more readily
understand manage the object, we also include the Perl class or type of the referenced object when known
and also the process identifier (the R process id) in which the object was created and makes sense.

One can operate on these Perl reference objects from within R by invoking methods on them, passing
them as arguments to other Perl methods and sub-routines. As they are passed across the R/S-Perl interface,
the R/S reference objects are resolved into the Perl values from which these references were generated.

3 Evaluation Perl Expressions

With those preliminaries out of the way, we are ready to actual use the Perl interpreter.
The most obvious and, at times, simplest way to interact with Perl is to have it evaluate a string. We

can pass to the Perl interpreter a command presented to it as a legal Perl script in the form of a string. This
is much like the way we would call Perl using its command line argument -e.

Let’s look at some simple examples. The first expression just prints the number 10.

[]
invisible(.PerlExpr(’printf "10\\n";’))

The next example prints the string Hello to R user (your login) from within Perl, substituting
the actual value for your login. It does this by retrieving it from the environment variables accessible in Perl
via the ENV associative array.

[]
invisible(.PerlExpr(’printf "Hello to R user ($ENV{\’USER\’}) from within Perl\\n";’))

Note how we had to escape the quotes ‘’ surrounding USER. To me this is ugly, complicated and very
error-prone. It is just one argument against communicating via strings. We’ll see more.

Now, we can also perform assignments in these scripts. Here we create an array containing three strings.
a is now a regular Perl variable and persists after this expression is evaluate. Therefore, it is available to use
in other scripts/commands. We can also retrieve the values of Perl variables directly from andinto R, as we
see in the next line – PerlGet(”a”, array=T). This should return a list of length 3 whose elements are the
individual strings in a. We will discuss .PerlGet() below.

March 23, 2007 4[]

.PerlExpr(’@a = ("a","b","cde");’)

.PerlGet("a", isArray = T)

Recall that the interpreter is persistent. This means that any assignments one makes within this string will
overwrite existing variables with the same name and will be available to us in future calls to the interpreter.
For instance, in the code above, a variable a that existed before we executed the second expression will be
discarded and all future references to a will see the array of length three.

This is both good and bad. A problem arises if you assign a value to a Perl variable named foo and then
call a function that I have written that also assigns to foo. When my function returns, your value of foo is
lost. At best, you will get an error (unlikely). At worst, you will get the wrong answer and not know! This
is another argument against using strings to communicate between systems: name space conflicts. We will
see that a more structure way to manage the computations is to call methods and sub-routines directly and
manage the name space of variables (i.e. assignments) in R rather than Perl.

We should also mention that the scripts can contain more than one expression. We can pass any legal
Perl script to the interpreter. This can define its own sub-routines, classes, etc. and load packages, and so
on.

In this example, we define an R function that allows one to perform regular expression replacements in
a string using the Perl =˜ operator. (Of course, R and S have their own built-in versions of these. This is
presented here only for illustration.)

We create the Perl expression in R by pasting together the different strings. We want to end up with
something like $tmp = \textit{your string} ; $tmp =~ s/pattern/replacement/g; $tmp; So there
are three perl expressions within the single script.

[]
perlSub <-
function(string, pat, with) {
tmp <- paste("s/",pat,"/",with,"/g",sep="")
tmp <- paste("$tmp =~",tmp,";")
tmp <- paste(paste("$tmp =\"", string, "\";",sep=""), tmp, "$tmp;")

.PerlExpr(tmp)
}

To avoid conflicts with other functions (Perl or R) using $tmp as a variable, we can define a sub-routine
and call it.

[]
perlSub <-
function(string, pat, with) {
tmp <- "sub RSsubstitute { my ($tmp, $pat, $with) = @_; $tmp =~ s/$pat/$with/g; return $tmp;}"

tmp1 <- paste("RSsubstitute(\"",string,"\",\"", pat,"\",\"", with,"\");", sep="")
tmp <- paste(tmp, tmp1, sep="\n")

.PerlExpr(tmp)
}

March 23, 2007 5In this example, we are defining the RSsubstitute() each time the function is called. We can avoid this
using the R/S function .PerlExists(). This allow us to determine if a Perl variable (of a particular type) is
defined.

[]
perlSub <-
function(string, pat, with) {
if(.PerlExists("RSsubstitute", "CV")) {
tmp <- "sub RSsubstitute { my ($tmp, $pat, $with) = @_; $tmp =~ s/$pat/$with/g; return $tmp;}"

} else
tmp <- ""

tmp1 <- paste("RSsubstitute(\"",string,"\",\"", pat,"\",\"", with,"\");", sep="")
tmp <- paste(tmp, tmp1, sep="\n")

.PerlExpr(tmp)
}

This is only important if the fixed part of the script becomes large.
The the issue of escaping quotes and the complexity of creating the Perl script string in the examples

above illustrated the potential difficulties of creating the string in R to pass to Perl. When we have to pro-
grammatically generate any such string, we will probably choose to use text connections in S4/Splus5/Splus6.
In R, one would naturally use paste(). Since one should try to write code that works in both systems so as
to make the code more useful, one would probably choose paste() until “we” implement connections in R.
However, paste() can be cumbersome in some situations. Handling strings is not S’s forte. Actually, it is
Perl’s. So we have a bootstrapping issue.

There are two possible solutions or approaches to this issue of creating Perl scripts. One is to generate
the script by writing pieces of it to a file rather than accumulating these in a string. This is practical but
also complicated and inflexible. The alternative is to not create the script at all, but to call the relevant
Perl functions directly from within R. Rather than represent the R values which are to be arguments to the
Perl routine as strings, we can call that routine directly and allow the R/S-Perl interface to translate the
R values directly in memory. This preservers the semantics and is simpler for the user. Numeric values are
translated to numeric values rather than integers and objects remain as objects.

We will quickly look at how we use the first approach and tell Perl to invoke a script.

4 Evaluating the Contents of a Perl File: A Perl script

Suppose we already have self-contained Perl script residing in a file. Then we can execute that script
by passing the file name to the R/S function .PerlFile(). This parses and evaluates that script. Any
assignments, definitions, etc. processed during the evaluation of this script are available to us after that
script has completed.

If you take a look at the file tests/method.pl that is provided within the R/S package distribution, you
will see that it defines a Perl class named Mine and then uses it. It creates an instance of this class and calls
two of its methods wich print to Perl’s standard output (by default the same as R). We can execute this
script as follows.

[]
.PerlFile(system.file("tests/method.pl",pkg="RSPerl")

Note that we can access the variable $a and the Mine class after the script has terminated.

March 23, 2007 6[]
ref <- .PerlGet("a")
ref$Display(1)
ref <- .PerlNew("Mine", ’a’,’b’,’c’)
ref$Display(1)

Note that one has to be aware of slight differences between using embedded Perl and the regular stand-
alone version. If a script (either in a file or specified as a string) uses other packages.

If this script needs C-level Perl extensions, you should specify the name of a C routine that will initialize
these. This can be done automatically. See .PerlInit.

5 Calling Sub-Routines

[]

.Perl("Sum", 1,2,3,4)

6 Retrieving Perl Objects

.PerlGetArray .PerlGetTable .PerlGet

[]

7 Creating Perl Arrays and Tables

.PerlNewTable() and .PerlNewArray()

[]

.PerlAssign()

[]

One can apply a filter to the elements being retrieved. In this
example, we call the Reverse sub-routine defined in
\file{tests/RInit.pl}.

[]
.PerlExpr(’@x = ("abc","def", "ghi");’)
.PerlGetArray("x", apply="Reverse")

March 23, 2007 78 Operator Overloading

If one obtains a reference to a Perl array via a call to

.PerlGetArray(name, .convert=F)

then one can use the regular R/S syntax to extract elements of the array.

[]
.PerlExpr(’@a=("a","b","c");’)
ref <- .PerlGetArray("a", .convert = F)

ref[1,2]
[[1]]
[1] "a"

[[2]]
[1] "b"

9 Static/Class Methods

We use the same .Perl() to invoke static methods. However, we specify the name of the class in the call
via the ref argument. Rather than being a reference to a Perl object, this is given as the name of the Perl
class whose static method is to be invoked. As an example, we can call the PrintID in the class Mine. (This
is defined in the file method.pl in the examples/ directory of the distribution.) The method expects no
arguments and so we specify the name of the method and the name of the class in which the method is
defined.

[]
.PerlFile(system.file("examples/method.pl", pkg="Java"))

.Perl("PrintID", ref="Mine", array=F)

10 Creating Objects

Given a class definition with a method new, we can invoke that method as a static class method.
Not quite working. Needs some thinking. There is likely to be a C routine

[]
.Perl("new", arg1, arg2,...,ref="className")

11 Retrieving Values

One can get the value of a variable in the top-level context or packages using the .PerlGet*() functions.
As with all Perl operations, one must indicate the type of the variable so that it can be coerced to the

March 23, 2007 8appropriate form (array, scalar, hash, etc.) This is done by selecting the appropriate function (rather than
an argument to a single function).

[]
.PerlGetTable("ENV")

[]
.PerlExpr("@a=(’x’,’y’,’z’);")
[1] 3
> .PerlGetArray("a")
[[1]]
[1] "x"

[[2]]
[1] "y"

[[3]]
[1] "z"

>

12 Reflectance

One can get a list of the variables within a package using .PerlStashInfo().

[]
names(.PerlStashInfo("main"))

.PerlPackage("News::NNTPClient"))
names(.PerlStashInfo("News::NNTPClient"))

13 Calling Code Directly, not by Name

The following shows how we can get a handle on a sub-routine or method and call it directly, rather than
by name.

[]
pj <- .PerlGetCode("Join")
.Perl(pj, "--", "abc","def")

The benefit of doing this is again to avoid clutter and conflict in the name-space. One can get create
anonymous routines and store references to them. All other code is unaware of their existence, but we can
call them in the following manner.

[]

r <- .PerlExpr(’sub { my ($l) = @_; print "$l\n"; return 1;}’)
.Perl(r, "This is a test")

March 23, 2007 9This is not an entirely technical and pedantic point. Many of us have experience with name conflicts in
S. Programmers sometimes circumvent apparent difficulties with the scoping rules in S and assign variables
that are to be shared by different functions in frame 0. This happens frequently in the modelling code.
The potential for two developers to use the same variable name may be small. It is non-zero however and
the improbability of the event occurring means that we rarely think of it when spending numerous hours
debugging the problem.

14 Garbage Collection

Basically, by embedding a persistent Perl interpreter within an R/S session, we have two interactive workspaces
in existence at any time. As with R/S by itself, one can assign the results of (intermediate) computations
at the top-level so that they can be used later. Unfortunately, these can be large and consume resources,
especially memory. Having a Perl interpreter open at the same time means that one can do this in more
ways. One can assign values to Perl variables via Perl expressions evaluated via .PerlExpr() and .PerlFile(),
and also implicitly within the internal PerlReference objects that are returned (anonymously) by these calls
and others.

Just as with R and S, the system cannot discard these objects automatically. Each interpreter cannot
determine when you, the user, has finished operating on these objects, so it must keep them for potential
future computations. As a result, the garbage collection – the discarding of no longer needed objects – is up
to the user. One can undefine Perl variables via the .PerlUndef() function. Also, one can discard anonymous
PerlReference objects via the .PerlDiscard() function. In each case, the Perl object is discarded and its
resources can be reclaimed.

To determine what Perl variables are defined, one can use the .PerlObjects() function. Similarly, to get a
list of all the PerlReference objects currently in the internal table, one can use the function .PerlReferenceOb-
jects(). To simply get the number of entries in this table, one can use the function .PerlReferenceCount().
This returns both the current number of entries and also the total number of reference objects that have
been created in the session.

15 Arrays and Hash Tables

.PerlNewArray() and .PerlNewTable()
The subsetting and element assignment operators

[]
x[1] <- 1
x[1]

x["a"] <- 1
x["a"]

.PerlLength()

.PerlClear()

.PerlNames() and names().

16 Style

Should one paste together a Perl command in the form of a string or call the Perl sub-routine or method
with arguments that are given by R objects? My feeling is that the latter is greatly preferrable. There are
several reasons. One is that it insulates the function call from being Perl-dependent. It is possible for one to
replace this code with a call to a CORBA operation or a Java method by changing only the reference to the

March 23, 2007 10.Perl() function. A second reason relates to the difficulty associated with creating the string to represent the
Perl expression. In many cases, one can simple use paste() to create the string. However, in other cases, the
R values that one wishes to represent in the Perl expression do not have a simple string representation. This
is why we want to allow them to be exported as references to R objects whose methods are implemented by
R functions. When we use strings, this is hard. When we use real objects, we have the flexibility to allow
such foreign/indirect references.

17 Using Extensions That Also Use C Code

When one first attempt to load the NNTPClient (see http://www.), an error similar to the following may
appear.

[]
Can’t load module Socket, dynamic loading not available in this perl.
(You may need to build a new perl executable which either supports
dynamic loading or has the Socket module statically linked into it.)
at /usr/lib/perl5/site_perl/5.005/News/NNTPClient.pm line 6
BEGIN failed--compilation aborted at /usr/lib/perl5/site_perl/5.005/News/NNTPClient.pm line 6.
BEGIN failed--compilation aborted at (eval 1) line 1.

This indicates that there is a problem loading the compiled C-level code relating to the Socket module
which is used by the News::NTTPClient module. To fix this, we must tell the embedded Perl interpreter
how to communicate with that code. We do this by supplying a value for the argument extensions in the
call to .PerlInit() (or alternatively in a call to .PerlFile()). This argument should be the name of a C-level
routine that tells Perl how to find the C libraries of the necessary modules.

Perl provides a tool to generate this code. The following command generates a C file named xsinit.c
which defines the routine xs_init() with the necessary commands to tell Perl how to dynamically load the
C code for the IO and Socket modules. Other

[]
perl -MExtUtils::Embed -e xsinit -- -o xsinit.c -std IO Socket

One can add modules to this when compiling the Perl package. This can be done by adding to elements
to the PERL MODULES variable in GNUmakefile. Alternatively, one can specify these on the command
line and regenerate xsinit.c.

Note, that the shared library associated with that module must be available to the Perl engine at run
time so that symbols can be resolved. This is a little trickier than when running Perl as a stand-alone
executable. Accordingly, for the present, we just add these libraries to the link command in the Makefile.
For example, we find where Socket.so is located on the system and include that in the list of objects
identified by PERL MODULE SOS.

In the future, we will find a way to make this more dynamic and to be able to dynamically load these
modules from R itself and make them available to Perl from there. This involves playing with different flags.

[?] [?]
[?]

http://www.

	Overview
	Inter-System Object Conversion
	Non-Primitive Object Conversion

	Evaluation Perl Expressions
	Evaluating the Contents of a Perl File: A Perl script
	Calling Sub-Routines
	Retrieving Perl Objects
	Creating Perl Arrays and Tables
	Operator Overloading
	Static/Class Methods
	Creating Objects
	Retrieving Values
	Reflectance
	Calling Code Directly, not by Name
	Garbage Collection
	Arrays and Hash Tables
	Style
	Using Extensions That Also Use C Code

